首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Lithostratigraphic, Hydrothermal, and Tectonic Setting of the Boundary Volcanogenic Massive Sulfide Deposit, Newfoundland Appalachians, Canada: Formation by Subseafloor Replacement in a Cambrian Rifted Arc
【24h】

Lithostratigraphic, Hydrothermal, and Tectonic Setting of the Boundary Volcanogenic Massive Sulfide Deposit, Newfoundland Appalachians, Canada: Formation by Subseafloor Replacement in a Cambrian Rifted Arc

机译:纽芬兰阿巴拉契亚山脉边界火山成块硫化物矿床的岩石地层,水热和构造背景:在寒武纪裂谷中通过海底置换形成

获取原文
获取原文并翻译 | 示例
       

摘要

The Boundary volcanogenic massive sulfide (VMS) deposit (~ 0.5 Mt @ 3.5% Cu, 4% Zn, 1% Pb, 34.0 g/t Ag) in the Tally Pond Group, central Newfoundland, represents one of the best preserved, subseafloor-replacement style VMS deposits in the northern Appalachian orogen. The deposit is hosted within a Late Cambrian (~510 Ma) volcanic sequence consisting predominantly of rhyolitic flows and associated volcaniclastic rocks. Footwall strata are dominated by rhyolitic lapilli tuff, tuffs, lesser rhyolite flows, and in situ rhyolite breccias. The hanging wall consists of massive, quartz-bearing, flow-banded lobe and breccia facies rhyolite. The deposit occurs at and below the contact between these two units, and comprises pyrite, chalcopyrite, and lesser sphalerite (and other minerals). Massive mineralization contains abundant clasts of the surrounding host rocks, including chlorite-sericite-quartz-altered rhyolite lapilli and ash. Hydrothermally altered rocks consist of variably intense chlorite with lesser sericite and quartz. Chlorite alteration occurs in a discordant geometry, likely representing hydrothermal upflow zones, and chlorite-sericite-quartz occur as blankets that are parallel to the volcanic stratigraphy, likely representing alteration associated with replacement. The hanging-wall rhyolite flows also contain moderate to intense, pervasive quartz and sericite alteration. Both the hanging wall and footwall are characterized by strong Na_2O-Sr depletions, K_2O-MgO-Fe_2O_3-Ba enrichments, high alteration index values (e.g., Ba/Sr, chlorite-carbonate-pyrite index (CCPI), alteration index (AI)), and enrichments in base metals and volatile metals (e.g., Cu, Zn, Pb, Hg). The presence of abundant remnant wall-rock and host-rock clasts within the ore, intricate sulfide replacement of laminated porous tuff and sand dikes, replacement fronts in host lithofacies, and intense alteration in both the footwall and hanging wall (where the hanging wall is preserved) are all features consistent with formation of the bulk of the Boundary deposit via subseafloor replacement. The deposit likely formed as a result of cooling of metal-bearing hydrothermal fluids, mixing with ambient seawater and pore water-entrained seawater within the volcanic rocks at a permeability interface between young, unlithified, highly permeable footwall volcaniclastic rocks and relatively impermeable hanging-wall rhyolitic flows. In our model, this permeability boundary was an important feature that promoted subseafloor replacement within the deposit. Immobile element systematics of rhyolitic rocks from the Boundary deposit lack major differences in primary petrochemistry between hanging-wall and footwall strata. All rocks from the deposit area are subalkalic with transitional Zr/Y ratios (2.8-4.5), La/Sm ratios <1 (normalized to upper crust), and primitive mantle normalized signatures with slightly light rare earth element (LREE)-enriched patterns with flat heavy REE (HREE), and negative Nb, Ti, and Eu anomalies. These geochemical features, coupled with existing Nd-Pb isotope data, zircon inheritance patterns, and geologic information, are consistent with rhyolitic rocks at the Boundary deposit having formed by re-melting of arc basement, with continental crust (or recycled continental crust) present in the source region. It is likely that the deposit and its associated rhyolitic host rocks formed within a Cambrian contmental(?) or pericontinental rifted arc along the margin of Ganderia, within the Iapetus Ocean.
机译:纽芬兰中部塔利池塘群的边界火山成块状大块硫化物(VMS)沉积物(〜0.5 Mt @ 3.5%Cu,4%Zn,1%Pb,34.0 g / t Ag)是保存最完好的海底之一-北部阿巴拉契亚造山带中的替代型VMS矿床。该矿床位于寒武纪晚期(〜510 Ma)火山岩层序中,主要由流纹岩流和相关的火山碎屑岩组成。底盘层主要由流纹岩性的凝灰岩凝灰岩,凝灰岩,较少的流纹岩流和原位的流纹岩角砾岩为主。悬壁由块状,带石英的流动带状叶和角砾岩相流纹岩组成。该矿床发生在这两个单元之间的接触处及下方,包括黄铁矿,黄铜矿和较小的闪锌矿(及其他矿物)。大量的矿化作用包含了周围寄主岩的大量碎屑,包括绿泥石-绢云母-石英-改变的流纹岩青金石和灰烬。热液蚀变的岩石由不同强度的绿泥石,较少的绢云母和石英组成。亚氯酸盐的变化以不规则的几何形状发生,可能代表热液上流带,亚氯酸盐-绢云母-石英以与火山岩地层平行的覆盖层的形式出现,可能代表与置换有关的变化。悬壁流纹岩流还包含中等至强烈的无处不在的石英和绢云母蚀变。上盘和下盘都具有强的Na_2O-Sr耗竭,K_2O-MgO-Fe_2O_3-Ba富集,高蚀变指数值(例如Ba / Sr,绿泥石-碳酸盐-黄铁矿指数(CCPI),蚀变指数(AI))的特征。 ),以及贱金属和易挥发金属(例如Cu,Zn,Pb,Hg)中的富集。矿石中存在大量残留的围岩和基质岩石碎屑,层状多孔凝灰岩和沙堤的复杂硫化物置换,宿主岩相的前锋置换以及下盘壁和上盘壁(下盘壁在其中的位置)剧烈变化保留)是与通过海底置换形成大部分边界沉积物一致的特征。该沉积物可能是由于含金属的热液冷却,与周围的海水以及夹带在火山岩中的孔隙水夹带的海水混合而形成的,这是在未固结的,高渗透率的年轻底盘火山碎屑岩和相对不渗透的悬壁之间的渗透界面流纹。在我们的模型中,该渗透率边界是促进沉积物中海底置换的重要特征。边界矿床流纹岩的固定元素系统在上盘岩层和下盘岩层之间的主要岩石化学方面缺乏主要差异。沉积区的所有岩石均为次碱性,具有过渡的Zr / Y比(2.8-4.5),La / Sm比<1(归一化为上地壳)和原始地幔归一化特征,且稀土元素(LREE)含量稍轻REE(HREE)平坦且Nb,Ti和Eu负异常。这些地球化学特征,再加上现有的Nd-Pb同位素数据,锆石继承模式和地质信息,与通过弧形基底重新熔融形成的边界矿床的流纹岩岩石相一致,并存在陆壳(或再循环的陆壳)在源区域中。沉积物及其相关的流纹岩宿主岩很可能是在Iapetus海洋内沿Ganderia边缘的寒武纪角砾岩或洲际裂谷弧内形成的。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号