首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation
【24h】

Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation

机译:阿拉斯加布鲁克斯山脉红狗Zn-Pb-Ag矿床中硫化物矿物的组织,组成和硫同位素变化:对成矿的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The Red Dog Zn-Pb deposits are hosted in organic-rich mudstone and shale of the Mississippian Kuna Formation. A complex mineralization history is defined by four sphalerite types or stages: (1) early brown sphalerite, (2) yellow-brown sphalerite, (3) red-brown sphalerite, and (4) late tan sphalerite. Stages 2 and 3 constitute the main ore-forming event and are volumetrically the most important. Sulfides in stages 1 and 2 were deposited with barite. whereas stage 3 largely replaces barite. Distinct chemical differences exist among the different stages of sphalerite. From early brown sphalerite to later yellow-brown sphalerite and red-brown sphalerite, Fe and Co content generally increase and Mn and Tl content generally decrease. Early brown sphalerite contains no more than 1.9 wt percent Fe and 63 ppm Co, with high Mil (up to 37 ppm) and Tl (126 ppm), whereas yellow-brown sphalerite and red-brown sphalerite contain high Fe (up to 7.3 wt percent) and Co (up to 382 ppm), and low Mn (<27 ppm) and Tl (<37 ppm). Late tan sphalerite has distinctly lower Fe (< 0.9 wt percent) and higher Tl (up to 355 ppm), Mn (up to 177 ppm), and Ge (426 ppm), relative to earlier sphalerite. Wide ranges in concentrations of Ag, Cu, Pb, and Sb characterize all sphalerite types, particularly yellow-brown sphalerite and red-brown sphalerite, and most likely reflect submicroscopic inclusions of galena, chalcopyrite and/or tetrahedrite in the sphalerite. In situ ion microprobe sulfur isotope analyses show a progression from extremely low delta~(34)S values for stage 1 (as low as -37.2 per thousand) to much higher values for yellow-brown sphalerite (mean of 3.3 per thousand; n = 30) and red-brown sphalerite (mean of 3.4; n = 20). Late tan sphalerite is isotopically light (-16.4 to -27.2 per thousand). The textural, chemical, and isotopic data indicate the following paragenesis: (1) deposition of early brown sphalerite with abundant barite, minor pyrite, and trace galena immediately beneath the sea floor in uncon-solidated mud; (2) deposition of yellow-brown sphalerite during subsea-floor hydrothermal recrystallization and coarsening of preexisting barite; (3) open-space deposition of barite, red-brown sphalerite and other sul-fides in veins and coeval replacement of barite; and (4) postore sulfide deposition, including the formation of late tan sphalerite breccias. Stage 1 mineralization took place in a low-temperature environment where fluids rich in Ba mixed with pore water or water-column sulfate to form barite, and metals combined with H2S derived from bacterial sulfate reduction to form sulfides. Higher temperatures and salinities and relatively oxidized ore-stage fluids (stages 2 and 3) compared with stage 1 were probably important controls on the abundances and relative amounts of metals in the fluids and the resulting sulfide chemistry. Textural observations and isotopic data show that preexisting barite was reductively dissolved, providing a source of H_2S for sulfide mineral formation. In stage3, the continued flow of hydrothermal fluids caused thermal alteration of organic-rich mudstones and a build-up of methane that led to fluid overpressuring, hydrofracturing, and vein formation. Barite, red-brown sphalerite, and other sulfides were deposited in the veins, and preexisting barite was pervasively replaced by red-brown sphalerite. Hydrothermal activity ceased until Jurassic time when thrusting and large-scale fluid flow related to the Brookian orogeny remobilized and formed late tan sphalerite in tectonic breccias.
机译:Red Dog Zn-Pb矿床存在于密西西比州库纳组富含有机质的泥岩和页岩中。复杂的矿化历史由四种闪锌矿类型或阶段定义:(1)早期棕色闪锌矿,(2)黄棕色闪锌矿,(3)红棕色闪锌矿和(4)晚棕褐色闪锌矿。第2和第3阶段是主要的成矿事件,在体积上是最重要的。第1阶段和第2阶段的硫化物沉积在重晶石上。而第3阶段将取代重晶石。闪锌矿的不同阶段之间存在明显的化学差异。从早期的棕色闪锌矿到后来的黄棕色闪锌矿和红棕色闪锌矿,Fe和Co含量通常会增加,而Mn和Tl含量通常会下降。早期的棕色闪锌矿含有不超过1.9 wt%的铁和63 ppm的钴,具有高的Mil(高达37 ppm)和Tl(126 ppm),而黄棕色的闪锌矿和红棕色的闪锌矿含有高的Fe(高达7.3 wt百分比)和Co(最高382 ppm),低Mn(<27 ppm)和T1(<37 ppm)。与较早的闪锌矿相比,后期的棕褐色闪锌矿具有明显更低的Fe(<0.9 wt%)和更高的Tl(高达355 ppm),Mn(高达177 ppm)和Ge(426 ppm)。 Ag,Cu,Pb和Sb的浓度范围很宽,是所有闪锌矿类型的特征,尤其是黄棕色闪锌矿和红棕色闪锌矿,并且很可能反映了闪锌矿中的方铅矿,黄铜矿和/或四面体的亚显微夹杂物。原位离子微探针硫同位素分析显示,从阶段1的极低δ〜(34)S值(低至千分之37.2)到黄褐色闪锌矿的高得多的值(均值3.3 /千; n = 30)和红棕色闪锌矿(平均值3.4; n = 20)。晚棕褐色闪锌矿的同位素较轻(-16.4至-27.2 /千)。质地,化学和同位素数据表明存在以下共生作用:(1)在未固结的泥浆中,海底下立即沉积有大量重晶石,次黄铁矿和微量方铅矿的早期棕色闪锌矿; (2)海底热液重结晶过程中黄褐色闪锌矿的沉积和原有重晶石的粗化; (3)重晶石,红棕色闪锌矿和其他硫化物在矿脉中的露天沉积和重晶石的后代置换; (4)矿石后硫化物沉积,包括后期棕褐色闪锌矿角砾岩的形成。第1阶段的矿化发生在低温环境中,其中富含Ba的流体与孔隙水或水硫酸铵混合形成重晶石,金属与细菌硫酸盐还原产生的H2S结合形成硫化物。与阶段1相比,较高的温度和盐度以及相对氧化的矿石阶段流体(阶段2和3)可能是控制流体中金属的丰度和相对含量以及所产生的硫化物化学的重要控制因素。纹理观察和同位素数据表明,先前存在的重晶石被还原溶解,为硫化物矿物的形成提供了H_2S的来源。在第3阶段,热液的持续流动导致富含有机物的泥岩发生热蚀变,并形成甲烷,导致流体超压,水力压裂和形成脉动。重晶石,红棕色闪锌矿和其他硫化物沉积在静脉中,先前存在的重晶石被红棕色闪锌矿普遍取代。热液活动一直持续到侏罗纪时期,当时与布鲁克纪造山运动有关的逆冲作用和大量流体流动重新形成了构造角砾岩中的棕褐色闪锌矿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号