...
首页> 外文期刊>Inverse Problems: An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data >Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo
【24h】

Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

机译:用黎曼流形哈密顿量蒙特卡罗方法求解大型PDE约束的贝叶斯逆问题

获取原文
获取原文并翻译 | 示例
           

摘要

We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H~1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint technique. Various numerical results up to 1025 parameters are presented to demonstrate the ability of the RMHMC method in exploring the geometric structure of the problem to propose (almost) uncorrelated/independent samples that are far away from each other, and yet the acceptance rate is almost unity. The results also suggest that for the PDE models considered the proposed fixed metric RMHMC can attain almost as high a quality performance as the original RMHMC, i.e. generating (almost) uncorrelated/independent samples, while being two orders of magnitude less computationally expensive.
机译:我们考虑使用黎曼流形汉密尔顿蒙特卡罗(RMHMC)方法来解决由偏微分方程(PDE)控制的统计逆问题。贝叶斯框架被用来将反问题转化为统计推断任务,其解决方案是无条件维数参数空间中的后验分布,条件是观测数据和高斯先验条件。我们使用符合H〜1的有限元方法和矩阵传递技术来离散化似然性和先验性。 RMHMC方法的强大之处在于,它利用了由基础反问题的PDE约束引起的几何结构。因此,每个RMHMC后验样本几乎不相关/彼此独立,从而提供了统计上有效的马尔可夫链模拟。但是,这种统计效率是以计算为代价的。这促使我们考虑在计算上更有效的RMHMC策略。我们构造的核心是,对于高斯误差结构,费舍尔信息矩阵与高斯-牛顿黑森州重合。我们在考虑结合了最新的伴随技术和RMHMC方法的优势的简化计算的RMHMC方法时利用了这一事实。具体来说,我们首先在最大后验点处形成高斯-牛顿黑森州,然后在整个RMHMC模拟中将其用作固定的恒定度量张量。这就消除了对计算上昂贵的差分几何Christoffel符号的需求,从而大大减少了计算工作量,并相应地降低了采样效率。通过通过随机奇异值分解技术使用低秩逼近,我们进一步降低了形成Fisher信息矩阵的成本。这是有效的,因为需要少量的Hessian向量积。反过来,Hessian向量乘积只需要使用伴随技术的两个额外的PDE解即可。提出了多达1025个参数的各种数值结果,以证明RMHMC方法探索问题的几何结构以提出(几乎)彼此不相关的/不相关/独立的样本的能力,但是接受率几乎是一致的。结果还表明,对于PDE模型,建议的固定度量RMHMC可以达到与原始RMHMC几乎相同的质量性能,即生成(几乎)不相关/独立的样本,同时在计算上要少两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号