...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Methane formation at Costa Rica continental margin - constraints for gas hydrate inventories and cross-decollement fluid flow
【24h】

Methane formation at Costa Rica continental margin - constraints for gas hydrate inventories and cross-decollement fluid flow

机译:哥斯达黎加大陆边缘的甲烷形成-天然气水合物库存和交叉尾流流体的限制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a numerical model study in order to quantify the effects of organic carbon (POC) degradation and fluid migration on methane and gas hydrate formation at ODP site 1040 (Costa Rica convergent margin). Various model runs show that POC-degradation in upper plate sediments yields a potential for methane hydrate formation between 0.8 and 2.5 vol.% of pore space. However, observed chlorinity anomalies cannot be explained by the amount and the distribution pattern of gas hydrates. Moreover, pore water profiles of ammonia do not match the observations. Setting up a moderate upward flow (0.03 cm yr(-1)) Of methane-enriched, low-chlorinity fluids (induced by dewatering of oceanic plate sediments) leads to a good approximation to measured pore water profiles, thus enabling a precise estimate of POC degradation kinetics. Fluid flow has a strong impact on the location of the upper limit of the modeled gas hydrate occurrence zone (GHOZ) and may increase the total amount of gas hydrate by more than 50%. Our best estimate of the amount of gas hydrate within the GHOZ is on average 1.65 vol.% of pore space, which corresponds to about 2.5 Tg of methane per km trench within the frontal prism of slope sediments.To comply with the fact that subducted pore waters are rich in sulfate and that there is striking evidence for fluid conduits at various depths we performed additional model runs, where we simulated fluid flow by using a Gauss-type rate law, allowing us to define distinct fluid sources. We can demonstrate that combined methane production in the upper plate sediments and sulfate reduction at the top of the down going slab is sufficient to prevent the upward movement of the zone of anaerobic oxidation of methane (AOM) to above the decollement at given upward advection rates. Steep pore water gradients along the plate boundary can be explained by lateral backflow within oceanic plate sediments. On a long term (in the order of at least some 100,000 years), fluid flow along conduits is likely to occur at low rates with temporarily increased pulses. All modeled runs are constrained by their compatibility to observed pore water profiles. (c) 2005 Elsevier B.V. All rights reserved.
机译:我们提供了一个数值模型研究,以量化有机碳(POC)降解和流体迁移对ODP站点1040(哥斯达黎加会聚边缘)甲烷和天然气水合物形成的影响。各种模型运行表明,上板沉积物中的POC降解产生了在孔隙体积的0.8%至2.5%(体积)之间生成甲烷水合物的潜力。但是,观察到的氯异常不能用天然气水合物的数量和分布模式来解释。此外,氨的孔隙水分布与观测结果不符。设置适度的向上流动(0.03 cm yr(-1))(富含甲烷的低氯流体)(由于洋洋板块沉积物的脱水引起),可以很好地近似测得的孔隙水剖面,从而可以精确估算POC降解动力学。流体流动对模拟的天然气水合物发生区(GHOZ)上限的位置有很大影响,并且可能使天然气水合物的总量增加50%以上。我们对GHOZ中气体水合物的最佳估计是平均孔隙空间的1.65%(体积),相当于斜坡沉积物前棱柱内每公里沟槽约有2.5Tg甲烷。海水中富含硫酸盐,并且在不同深度都有明显的流体导管证据,我们进行了附加的模型运行,在该模型中,我们使用高斯型速率定律对流体流动进行了模拟,从而可以定义不同的流体源。我们可以证明,在给定的向上对流速率下,上部板状沉积物中甲烷的产生与向下平板顶部的硫酸盐还原相结合,足以防止甲烷厌氧氧化区(AOM)向上运动至弯度以上。 。沿板块边界的陡峭孔隙水梯度可以用大洋板块沉积物内的横向回流来解释。从长远来看(至少约100,000年),沿着管道的流体流动可能会以较低的速率发生,并且脉冲会暂时增加。所有建模的运行都受其与观察到的孔隙水剖面的兼容性的限制。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号