...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Shock-induced transformation of olivine to a new metastable (Mg,Fe)(2)SiO4 polymorph in Martian meteorites
【24h】

Shock-induced transformation of olivine to a new metastable (Mg,Fe)(2)SiO4 polymorph in Martian meteorites

机译:冲击诱导橄榄石陨石转变为新的亚稳态(Mg,Fe)(2)SiO4多晶型物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transient high pressures and temperatures generated during meteor or asteroid impacts induce mineral phase transformations that can mimic those occurring at depth within the silicate mantle of terrestrial planets. Olivine (alpha-(Mg,Fe)(2)SiO4), the primary constituent of the Earth's upper mantle and of chondritic meteorites, transforms to the high-pressure polymorphs wadsleyite and ringwoodite (beta-, gamma-(Mg,Fe)(2)SiO4) that are observed in shocked chondrites. The observed phase transitions place constraints on the shock P-T conditions attained and they lead to models that describe the impact event. We studied the olivines present within two newly catalogued Martian meteorites NWA 2737 and NWA 1950 using micro-Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) techniques. The shock conditions were not sufficient to cause melting or transformation of the olivines into wadsleyite or ringwoodite (Mg,Fe)(2)SiO4. The shocked olivines are dark-coloured in hand specimen and thin section due to the presence of FexNiy, metallic nanoparticles formed during the shock. Molecular Dynamics simulations (MD) are consistent with the observation that the shocked olivines give rise to a new orthosilicate polymorph (zeta-(Mg,Fe)(2)SiO4) that is formed metastably during the shock process and that is subsequently recovered to ambient conditions. The presence of the new (Mg,Fe)(2)SiO4 polymorph in shocked ultrabasic rocks including meteorites may have remained undetected due to its structural and spectroscopic similarities with olivine. The existence of the metastable a- phase transition also allows rationalising previously unexplained results of shock compression experiments on olivines. zeta-(Mg,Fe)(2)SiO4 is also formed at ambient pressure as a metastable intermediate during back-transfon nation from wadsleyite. (c) 2007 Elsevier B.V. All rights reserved.
机译:在流星或小行星撞击期间产生的瞬态高压和高温引起矿物相变,可以模仿地球行星硅酸盐幔深处发生的矿物相变。橄榄石(α-(Mg,Fe)(2)SiO4)是地球上地幔和陨石陨石的主要成分,转变为高压多晶型的沃兹利石和林榴石(β-,γ-(Mg,Fe)( 2)SiO4),在震惊的球粒陨石中观察到。观察到的相变对获得的冲击P-T条件施加了约束,并导致了描述冲击事件的模型。我们使用显微拉曼光谱和高分辨率透射电子显微镜(HRTEM)技术研究了两个新近编目的火星陨石NWA 2737和NWA 1950中的橄榄石。冲击条件不足以引起橄榄石融化或转变为沃兹利石或林伍德石(Mg,Fe)(2)SiO4。由于存在FexNiy,在冲击过程中形成的金属纳米颗粒,冲击后的橄榄石在手部样品和薄切片中呈深色。分子动力学模拟(MD)与观察到的一致:受冲击的橄榄石会生成新的正硅酸盐多晶型物(zeta-(Mg,Fe)(2)SiO4),该多晶型物在冲击过程中稳定形成,随后被恢复至环境温度条件。由于其与橄榄石的结构和光谱相似性,新的(Mg,Fe)(2)SiO4多晶型物在包括陨石在内的冲击超基性岩石中可能尚未被发现。亚稳态α相转变的存在还可以使橄榄石上的冲击压缩实验的先前无法解释的结果合理化。 zeta-(Mg,Fe)(2)SiO4在环境压力下也由瓦兹利石形成为亚稳态中间体,作为亚稳态中间体。 (c)2007 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号