...
【24h】

Life cycle of oceanic core complexes

机译:海洋核心复合体的生命周期

获取原文
获取原文并翻译 | 示例
           

摘要

Oceanic core complexes are the uplifted footwalls of very-large-offset low-angle normal faults that exhume lower crust and mantle rocks onto the seafloor at slow-spreading ridges. Although it is suggested on the basis of numerical modelling that they form during periods of relatively reduced magma supply, little is known about how they initiate and become inactive, nor why only certain normal fault systems develop into core complexes. In this paper we present results from a near-bottom sidescan sonar/bathymetric profiler survey and sampling study of the Mid-Atlantic Ridge near 13 degrees N that identify the critical controls on oceanic core complex development and evolution. We show that core complex detachment faults initiate as high-angle (65 degrees +/- 10 degrees) normal faults no different from surrounding valley-wall faults and, like them, rapidly flatten to dips of similar to 30 degrees in response to flexural unloading; however, on certain structures slip continues rather than being relayed inward onto a new normal fault. Runaway displacement appears to be triggered primarily by local waning of magma supply below a critical threshold, then aided by strain localisation resulting from seawater penetration and talc formation along the fault zones. Spreading becomes markedly asymmetric when the core complexes are active, and volcanism is suppressed or absent. When the asymmetry is such that the detachments accommodate more than half the total plate separation the active faults migrate across the axial valley. As a consequence magma is emplaced into and captured by the footwall of the detachment fault rather than being injected into the hanging wall, explaining the frequent presence of gabbro bodies and other melt relicts at oceanic core complexes. Core complexes are ultimately terminated when sufficient magma is emplaced to overwhelm the detachment fau in the 13 degrees N area by neovolcanic ridges propagating laterally across them from magmatically robust segments along strike.
机译:海洋岩心是由大偏移量的低角度正断层抬升的下盘,将下部的地壳和地幔岩石排到海底缓慢扩散的山脊上。尽管根据数值模型建议它们是在岩浆供应相对减少的时期形成的,但鲜为人知它们是如何引发和变为非活动状态的,也很少知道为什么只有某些正常的断层系统发展为岩心。在本文中,我们介绍了北大西洋中脊近13度的近底侧扫声纳/测深剖面仪调查和抽样研究的结果,这些结果确定了对海洋核心复杂物发育和演化的关键控制。我们表明,核心复杂的分离断层起初是高角度(65度+/- 10度)的法向断层,与周围的谷壁断层没有什么不同,并且像它们一样,由于弯曲卸载而迅速变平为大约30度的倾角;但是,在某些结构上,滑动继续发生,而不是向内传递到新的正常断层上。失控的位移似乎主要是由于岩浆供应低于临界阈值而局部减弱,然后是由于沿断裂带的海水渗透和滑石形成而引起的应变局部化。当核心复合物处于活动状态时,扩散变得明显不对称,并且火山活动被抑制或不存在。当不对称性使得分离物占据了整个板块分离的一半以上时,活动断层就会在轴向谷底移动。结果,岩浆被置于分离断层的下盘壁中并被其捕获,而不是被注入到悬挂壁中,这解释了大洋主体复合体中辉长岩体和其他熔融遗物的频繁存在。当足够的岩浆淹没了剥离断层时,岩心复合体最终终止。在北纬13度的区域中,新火山脊从岩浆稳健的部分沿走向横向传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号