...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle
【24h】

Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle

机译:含铝水辉石的电导率模型对地球下地幔的电学结构有影响

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical conductivity measurements of bridgmanite with various Al contents and a constant Mg# of 90 were performed at temperatures ranging from room temperature up to 2000 K at pressures of 26-28 GPa in a Kawai-type multianvil apparatus by impedance spectroscopy analysis. The incorporation of Al into bridgmanite raises its electrical conductivity significantly, but it is a small conductivity variation with respect to the quantity of Al. Synchrotron Mossbauer spectroscopy of recovered samples showed significant amounts of ferric iron in aluminous bridgmanite. The mobility of the charge carriers in bridgmanite was calculated based on the conductivity and the Fe3+/Sigma Fe ratio. The relationship between the logarithm of the electrical conductivity and the reciprocal temperature is consistent with Fe2+-Fe3+ electron hopping (small polarons) as the dominant conduction mechanism at low temperatures (<1400 K) and ionic conduction at higher temperatures (>1600 K). By taking various conduction mechanisms into account, we develop an electrical conductivity model for aluminous bridgmanite as a function of the Al and Fe contents. The small polaron conduction model indicates that the electrical conductivity of aluminous bridgmanite has a maximum at around 0.06 Al atoms per formula unit, and any further increase in the Al content in bridgmanite reduces the conductivity. In contrast, the ionic conduction model indicates that the electrical conductivity simply increases with increasing Al content. The resulting conductivity of Al-bearing bridgmanite first increases up to 0.06 Al atoms per formula unit and then remains constant or increases with increasing Al content at higher temperatures. The increase in conductivity observed in the uppermost part of the lower mantle by electromagnetic studies can be explained by the gradual decomposition of majorite garnet. The deeper lower mantle conductivity would be controlled by small polaron conduction because of the large positive activation volume required for ionic conduction. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过阻抗光谱分析法,在Kawai型多砧装置中,在室温至2000 K,压力为26-28 GPa的条件下,对各种Al含量和恒定Mg#为90的水辉石进行了电导率测量。将铝掺入水辉石中可显着提高其电导率,但是相对于铝的量,电导率变化很小。回收样品的同步加速器Mossbauer光谱显示,在铝水铝锰矿中有大量的三价铁。基于电导率和Fe3 + / Sigma Fe比值,计算了水铁矿中载流子的迁移率。电导率的对数与倒数温度之间的关系与作为主要传导机制的Fe2 + -Fe3 +电子跳跃(小极化子)在低温(<1400 K)和高温下的离子传导(> 1600 K)一致。通过考虑各种传导机制,我们开发了铝水辉石的电导率模型,该模型是Al和Fe含量的函数。小极化子传导模型表明,铝水辉石的电导率在每个配方单元中约为0.06 Al原子,并且任何进一步增加的含量都会降低电导率。相反,离子传导模型表明电导率仅随Al含量的增加而增加。所得含铝水辉石的电导率首先增加至每个配方单元0.06个Al原子,然后保持恒定或在较高温度下随Al含量的增加而增加。通过电磁研究在下地幔最上部观察到的电导率的增加可以用菱铁矿石榴石的逐渐分解来解释。较低的地幔电导率可以通过较小的极化子传导来控制,因为离子传导需要较大的正激活体积。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号