...
【24h】

Feedback between deglaciation, volcanism, and atmospheric CO2

机译:冰消,火山作用和大气二氧化碳之间的反馈

获取原文
获取原文并翻译 | 示例
           

摘要

An evaluation of the historical record of volcanic eruptions shows that subaerial volcanism increases globally by two to six times above background levels between 12 ka and 7 ka, during the last deglaciation. increased volcanism occurs in deglaciating regions. Causal mechanisms could include an increase in magma production owing to the mantle decompression caused by ablation of glaciers and ice caps or a more general pacing of when eruptions occur by the glacial variability. A corollary is that ocean ridge volcanic production should decrease with the rising sea level during deglaciation, with the greatest effect at slow spreading ridges. CO2 output from the increased subaerial volcanism appears large enough to influence glacial/interglacial CO2 variations. We estimate subaerial emissions during deglaciation to be between 1000 and 5000 Gt of CO2 above the long term average background flux, assuming that emissions are proportional to the frequency of eruptions. After accounting for equilibration with the ocean, this additional CO2 flux is consistent in timing and magnitude with ice core observations of a 40 ppm increase in atmospheric CO2 concentration during the second half of the last deglaciation. Estimated decreases in CO2 output from ocean ridge volcanoes compensate for only 20% of the increased subaerial flux. If such a large volcanic Output Of CO2 occurs, then volcanism forges a positive feedback between glacial variability and atmospheric CO2 concentrations: deglaciation increases volcanic eruptions, raises atmospheric CO2, and causes more deglaciation. Such a positive feedback may contribute to the rapid passage from glacial to interglacial periods. Conversely, waning volcanic activity during an interglacial could lead to a reduction in CO2 and the onset of an ice age. Whereas glacial/interglacial variations in CO2 are generally attributed to oceanic mechanisms, it is suggested that the vast carbon reservoirs associated with the solid Earth may also play an important role.
机译:对火山喷发历史记录的评估表明,在最后一次冰消期间,地下火山活动比背景水平(12 ka至7 ka)总体上增加了2到6倍。火山活动增加发生在冰川地区。原因机制可能包括由于冰川和冰帽的消融引起的地幔减压,或者由于冰川易变性而发生喷发时的更普遍的起搏,从而导致岩浆产生增加。一个必然的结果是,在冰消融过程中,海脊火山的产量应随着海平面的上升而减少,而对缓慢蔓延的海脊影响最大。升高的空中火山活动产生的二氧化碳排放量似乎足以影响冰川/冰川间二氧化碳的变化。假设冰雪排放与爆发频率成正比,我们估计冰消期间的空中排放量比长期平均本底通量高出1000至5000 Gt。在考虑了与海洋的平衡之后,这种额外的CO2通量在时间和大小上与冰芯观测到的一致,即冰芯观测表明在最后一次冰消期的后半段大气中的CO2浓度增加了40 ppm。据估计,洋脊火山二氧化碳排放量的减少仅补偿了增加的空中通量的20%。如果发生如此大的火山二氧化碳输出,那么火山活动会在冰川变化与大气二氧化碳浓度之间形成正反馈:冰消作用增加了火山喷发,增加了大气中的二氧化碳,并导致了更多的冰消作用。这种积极的反馈可能有助于从冰川期到冰川期的快速过去。相反,在间冰期,火山活动的减弱可能导致二氧化碳的减少和冰河时代的开始。尽管二氧化碳的冰川/冰川间变化通常归因于海洋机制,但有人认为与固体地球相关的巨大碳库也可能起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号