...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures
【24h】

Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

机译:Fe和Fe0.9Ni0.1在高压下的熔化限制了地核的温度

获取原文
获取原文并翻译 | 示例

摘要

The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mossbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time integrated synchrotron Mfissbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the gamma-is an element of-1 triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 +/- 5 GPa, 3345 +/- 120 K and 116 +/- 5 GPa, 3260 +/- 120 K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 +/- 200 K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core -mantle boundary to be 4000 +/- 200 K. We discuss a potential melting point depression caused by light elements and the implications of the presented core -mantle boundary temperature bounds on phase relations in the lowermost part of the mantle. (C) 2016 Elsevier B.V. All rights reserved.
机译:使用激光加热的金刚石砧池,同步加速器Mossbauer光谱仪和最近开发的快速温度读出光谱仪,可测量fcc和hcp结构的Fe0.9Ni0.1和Fe的熔点,最高可达125 GPa。熔化的开始是通过对原子运动敏感的时间积分同步加速器Mfissbauer信号的特征下降来检测的。在高压和高温下,样品的热压力受到X射线衍射测量的限制。 fcc结构的Fe和Fe0.9Ni0.1的最佳拟合熔解曲线落在先前研究范围内的宽范围内。我们能够得出γ-是Fe的1个三相点和Fe0.9Ni0.1的一个类似三点的元素,分别为110 +/- 5 GPa,3345 +/- 120 K和116 +/- 5 GPa,分别为3260 +/- 120K。在相似压力下测得的Fe的熔融温度略高于Fe0.9Ni0.1的熔融温度,而其1σ不确定性重叠。使用先前测量的hcp-Fe态声子密度,我们使用(准)三点作为锚点来计算hcp结构的Fe和Fe0.9Ni0.1的熔融曲线。外推的Fe0.9Ni0.1熔融曲线提供了对地球内部核心-外部核心边界温度上限5500 +/- 200 K的估计。然后,利用绝热模型对液态外部核心中的温度进行了近似,从而限制了温度核心-地幔边界的核心一侧的温度上限为4000 +/- 200K。我们讨论了轻元素引起的潜在熔点降低以及所提出的核心-地幔边界温度边界对相的影响在地幔最下部的关系。 (C)2016 Elsevier B.V.保留所有权利。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号