...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation
【24h】

Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation

机译:Mo的化合价和金属/硅酸盐分配:对地球增生和岩芯形成的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To better understand and predict the partition coefficient of Mo at the conditions of the deep interior of Earth and other terrestrial planets or bodies, we have undertaken new measurements of the valence and partitioning of Mo. X-ray absorption near edge structure (XANES) K-edge spectra for Mo have been measured in a series of Fe-bearing glasses produced at 1 bar and higher PT conditions. High pressure experiments have been carried out up to 19 GPa in order to better understand the effect of pressure on Mo partitioning. And, finally, a series of experiments at very low fO(2) conditions and high Si content metallic liquids has been carried out to constrain the effect of Si on the partitioning of Mo between metallic liquids and silicate melt. The valence measurements demonstrate that Mo undergoes a transition from 4+ to 6+ near IW-1, in general agreement with previous 1 bar studies on FeO-free silicate melts. High pressure experiments demonstrate a modest pressure dependence of D(Mo) metal/silicate and, combined with previous results, show a significant decrease with pressure that must be quantified in any predictive expression. Finally, the effect of dissolved Si in Fe-rich metallic liquid is to decrease D(Mo) significantly, as suggested by previous work in metallurgical systems. The effect of pressure, temperature, oxygen fugacity, metallic liquid composition, and silicate melt composition can be quantified by using multiple linear regression of available experimental data for Mo. Our XANES results show that Mo will be 4+ at conditions of core formation, so only experiments carried out at fO(2) of IW-1 and lower were used in the regressions. Application of predictive expressions to Earth accretion shows that D(Mo) decreases to values consistent with an equilibrium scenario for early Earth core-mantle. The Mo content of the primitive upper mantle (PUM) can be attained by metal-silicate equilibrium involving S-, C-, and Si-bearing metallic liquid, and peridotite silicate melt along the peridotite liquidus near 45 GPa and 3600 degrees C, late in the accretion process. This conclusion is insensitive to late giant impacts unless the degree of equilibration is very low (<5%). Published by Elsevier B.V.
机译:为了更好地理解和预测在地球和其他陆地行星或天体的深层内部条件下Mo的分配系数,我们对Mo的化合价和分配进行了新的测量。边缘结构附近的X射线吸收(XANES)K在一系列在1 bar和更高PT条件下生产的含铁玻璃中测量了Mo的边缘光谱。为了更好地了解压力对Mo分配的影响,已经进行了高达19 GPa的高压实验。最后,在非常低的fO(2)条件和高Si含量的金属液体中进行了一系列实验,以限制Si对Mo在金属液体和硅酸盐熔体之间分配的影响。化合价的测量结果表明,Mo在IW-1附近经历了从4+到6+的转变,这与先前对无FeO的硅酸盐熔体的1 bar研究大体一致。高压实验证明了D(Mo)金属/硅酸盐的适度压力依赖性,并且与先前的结果相结合,显示出随压力的显着降低,必须在任何预测表达式中进行量化。最后,正如先前在冶金系统中的研究所表明的那样,在富铁金属液体中溶解的硅的作用是显着降低D(Mo)。压力,温度,氧逸度,金属液体组成和硅酸盐熔体组成的影响可以通过使用可用的Mo实验数据进行多元线性回归来定量。我们的XANES结果表明,在成核条件下Mo将为4+,因此在回归分析中仅使用在IW-1和更低的fO(2)下进行的实验。将预测表达式应用于地球吸积表明,D(Mo)减小到与早期地球核心地幔平衡情况一致的值。原始上地幔(PUM)的Mo含量可以通过涉及含S,C和Si的金属液体的金属硅酸盐平衡来实现,并且橄榄岩硅酸盐沿着橄榄岩液相线在45 GPa和3600摄氏度附近熔融,后期在增生过程中。除非平衡度非常低(<5%),否则该结论对后期的巨大冲击不敏感。由Elsevier B.V.发布

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号