【24h】

Linking continental drift, plate tectonics and the thermal state of the Earth's mantle

机译:将大陆漂移,板块构造与地幔的热状态联系起来

获取原文
获取原文并翻译 | 示例
           

摘要

Continents slowly drift at the top of the mantle, sometimes colliding, splitting and aggregating. The evolutions of the continent configuration, as well as oceanic plate tectonics, are surface expressions of mantle convection and closely linked to the thermal state of the mantle; however, quantitative studies are so far lacking. In the present study we use 3D spherical numerical simulations with self-consistently generated plates and compositionally and rheologically distinct continents floating at the top of the mantle in order to investigate the feedbacks between continental drift, oceanic plate tectonics and the thermal state of the Earth's mantle, by using different continent configurations ranging from one supercontinent to six small continents. With the presence of a supercontinent we find a strong time-dependence of the oceanic surface heat flow and suboceanic mantle temperature, driven by the generation of new plate boundaries. Very large oceanic plates correlate with periods of hot suboceanic mantle, while the mantle below smaller oceanic plates tends to be colder. Temperature fluctuations of subcontinental mantle are significantly smaller than in oceanic regions and are caused by a time-variable efficiency of thermal insulation of the continental convection cell. With the presence of multiple continents the temperature below individual continents is generally lower than below supercontinent and is more time-dependent, with fluctuations as large as 15% that are caused by continental assembly and dispersal. The periods featuring a hot subcontinental mantle correlate with strong clustering of the continents and periods characterized by cold subcontinental mantle, at which it can even be colder than suboceanic mantle, with a more dispersed continent configuration. Our findings with multiple continents imply that periods of partial melting and strong magmatic activity inside the continents, which may contribute to continental rifting and pronounced growth of continental crust, might be episodic processes related to the supercontinent cycle. Finally, we observe an influence of continents on the wavelength of convection: for a given strength of the lithosphere we observe longer-wavelength flow components, when continents are present. This observation is regardless of the number of continents, but most pronounced for a single supercontinent.
机译:大陆在地幔顶部缓慢漂移,有时会碰撞,分裂和聚集。大陆构造以及海洋板块构造的演化是地幔对流的表面表现,并且与地幔的热状态紧密相关。但是,迄今为止尚缺乏定量研究。在本研究中,我们使用3D球面数值模拟,其中具有自洽生成的板块,并且在地幔顶部漂浮有成分和流变学上各不相同的大陆,以便研究大陆漂移,海洋板块构造与地幔热状态之间的反馈,使用从一个大洲到六个小洲的不同大陆配置。在超大陆的存在下,我们发现,受新板块边界的驱动,海洋表面热流和次洋幔温度具有强烈的时间依赖性。非常大的洋洋板块与洋底热的时期有关,而较小洋洋板下面的地幔往往更冷。大陆下地幔的温度波动明显小于海洋区域,并且是由大陆对流单元的隔热效率随时间变化而引起的。由于存在多个大洲,因此各个大洲以下的温度通常低于超大陆以下的温度,并且更加依赖时间,由大洲的聚集和散布引起的波动高达15%。具亚大陆性地幔热的时期与大陆的强集聚有关,以具亚大陆性地幔冷的时期为特征,在该时期它甚至比洋中亚地幔更冷,大陆构造更为分散。我们对多大洲的发现表明,两大洲内部部分熔融和强烈的岩浆活动时期可能是导致大陆裂谷和大陆壳明显增长的时期,可能是与超大陆周期有关的偶发过程。最后,我们观察到大洲对对流波长的影响:对于给定的岩石圈强度,当存在大洲时,我们观察到更长波长的流动分量。这种观察与大陆的数量无关,但对于单个超大陆最为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号