...
首页> 外文期刊>Ecological Applications >Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting
【24h】

Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting

机译:数据模型融合可更好地了解新兴病原体并改善传染病预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
机译:全世界的生态学家都面临着挑战,即如何通过预测人口,社区和生态系统如何应对全球变化来为紧迫而紧迫的环境问题提供解决方案。面对这一挑战,需要组织来自各种来源的生态信息,并以生态过程模型形式正式吸收数据。自从约翰·斯诺(John Snow)于1854年首次在伦敦水泵附近绘制霍乱病例图以来,传染病的研究一直依靠将观察到的疾病发病模式与机械过程模型相结合的策略。然而,人畜共患病和媒介传播的疾病越来越多地影响着人类和方法用于成功表征直接传播疾病的方法通常不足。我们使用四个案例研究来证明,疾病预测的进步需要对人畜共患病宿主和媒介种群以及对促进病原体扩增和疾病扩散到人类的动力学有更好的了解。在每个案例研究中,由于数据有限,病原体传播和影响的时空变化以及生物学认识不足,使得该目标变得复杂。我们提出了一种传染病研究中数据模型融合的概念框架,该框架使用分层的状态空间结构来解决这些基本挑战,以(1)集成多个数据源和空间尺度以告知潜在参数,(2)在过程中划分不确定性,观测模型,以及(3)明确建立在现有的生态和流行病学理解之上。考虑到传染病研究固有的局限性和迫切的进步需求,通过这种类型的概念框架融合数据和专业知识应该被证明是必不可少的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号