...
首页> 外文期刊>Bioelectromagnetics. >Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism
【24h】

Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism

机译:直流和交流电场中的角质形成细胞电刺激支持机电转导感应机制

获取原文
获取原文并翻译 | 示例

摘要

Sedentary keratinocytes at the edge of a skin wound migrate into the wound, guided by the generation of an endogenous electric field (EF) generated by the collapse of the transepithelial potential. The center of the wound quickly becomes more negative than the surrounding tissue and remains the cathode of the endogenous EF until the wound is completely re-epithelialized. This endogenous guidance cue can be studied in vitro. When placed in a direct current (DC) EF of physiological strength, 100V/m, keratinocytes migrate directionally toward the cathode in a process known as galvanotaxis. Although a number of membrane-bound (e.g., epidermal growth factor receptor (EGFR), integrins) and cytosolic proteins (cAMP, ERK, PI3K) are known to play a role in the downstream signaling mechanisms underpinning galvanotaxis, the initial sensing mechanism for this response is not understood. To investigate the EF sensor, we studied the migration of keratinocytes in a DC EF of 100V/m, alternating current (AC) EFs of 40V/m at either 1.6 or 160Hz, and combinations of DC and AC EFs. In the AC EFs alone, keratinocytes migrated randomly. The 1.6Hz AC EF combined with the DC EF suppressed the direction of migration but had no effect on speed. In contrast, the 160Hz AC EF combined with the DC EF did not affect the direction of migration but increased the migration speed compared to the DC EF alone. These results can be understood in terms of an electromechanical transduction model, but not an electrodiffusion/osmosis or a voltage-gated channel model.
机译:在皮肤伤口边缘的久坐角质形成细胞迁移到伤口中,由跨上皮电位的崩溃产生的内源性电场(EF)引导。伤口的中心迅速变得比周围的组织更负,并保持内源性EF的阴极,直到伤口完全重新上皮。可以在体外研究这种内源性指导信号。当置于生理强度为100V / m的直流(DC)EF中时,角质形成细胞会朝着阴极方向定向迁移,这一过程称为触角。尽管已知许多膜结合蛋白(例如表皮生长因子受体(EGFR),整联蛋白)和胞浆蛋白(cAMP,ERK,PI3K)在支撑galvanotaxis的下游信号传导机制中发挥作用,但这是其最初的传感机制。反应不被理解。为了研究EF传感器,我们研究了在100V / m的DC EF,在1.6或160Hz的40V / m的交流(AC)EF中角质形成细胞的迁移以及DC和AC EF的组合。仅在AC EF中,角质形成细胞随机迁移。 1.6Hz AC EF结合DC EF抑制了迁移方向,但对速度没有影响。相反,与单独的DC EF相比,将160Hz AC EF与DC EF结合使用不会影响迁移方向,但会提高迁移速度。这些结果可以通过机电转换模型来理解,而不能通过电扩散/渗透或电压门控通道模型来理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号