...
首页> 外文期刊>International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM >Sustainable manufacturing of ultra-fine aluminium alloy 6101 wires using controlled high levels of mechanical strain and finite element modeling
【24h】

Sustainable manufacturing of ultra-fine aluminium alloy 6101 wires using controlled high levels of mechanical strain and finite element modeling

机译:使用受控的高水平机械应变和有限元建模可持续制造超细铝合金 6101 线材

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The evolution of grain size and component mechanical behaviour are fundamental aspects to analyse and control when manufacturing processes are considered. In this context, severe plastic deformation (SPD) processes, in which a high shear strain is imposed on the material, are recognized as the main techniques to achieve microstructural changes and material strengthening by the recrystallization, attracting both academic and industrial investigation activities. At the same time, nowadays, sustainable manufacturing design is one of the main responsibilities of the researchers looking at UN2030 agenda and the modern industrial paradigms. In this paper a new severe SPD process is proposed with the aim to steer manufacturing to fourth industrial revolution using some of Industry 4.0 pillars. In particular, additive manufacturing (AM) and numerical simulations were setup as controlling and monitoring techniques in manufacturing process of wires. Strengthening effect (yield and ultimate tensile strength, plasticity and hardness) and microstructural evolution (continuous dynamic recrystallization -CDRX-) due to severe plastic deformation were experimentally analysed and numerically investigated by an innovative finite element (FE) model able to validate the effectiveness of a properly modified process for ultra-fine aluminium alloy AA6101 wires production designed with the aim to avoid any post manufacturing costly thermal treatment. The study provides an accurate experimental study and numerical prediction of the thermo-mechanical and microstructural phenomena that occur during an advanced large plastic deformation process; it shows how the combination of smart manufacturing and simulations control represents the key to renew the traditional manufacturing methods in the perspective of the Industry 4.0, connecting and integrating the manufacturing process for the industrial evolution in production.
机译:在考虑制造工艺时,晶粒尺寸和部件机械性能的演变是分析和控制的基本方面。在此背景下,对材料施加高剪切应变的严重塑性变形 (SPD) 工艺被认为是通过再结晶实现微观结构变化和材料强化的主要技术,吸引了学术界和工业界的研究活动。与此同时,如今,可持续制造设计是研究UN2030议程和现代工业范式的研究人员的主要职责之一。在本文中,提出了一种新的严格的SPD工艺,旨在利用工业4.0的一些支柱引导制造业走向第四次工业革命。特别是,建立了增材制造(AM)和数值模拟作为线材制造过程中的控制和监测技术。通过创新的有限元 (FE) 模型对由于严重塑性变形引起的强化效果(屈服和极限拉伸强度、塑性和硬度)和微观结构演变(连续动态再结晶 -CDRX-)进行了实验分析和数值研究,该模型能够验证适当修改的工艺对超细铝合金 AA6101 线材生产的有效性,旨在避免任何制造后昂贵的热处理。该研究对高级大塑性变形过程中发生的热机械和微观结构现象进行了准确的实验研究和数值预测;它展示了智能制造和仿真控制的结合如何代表工业4.0视角下更新传统制造方法的关键,连接和整合制造过程,以实现生产中的工业发展。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号