...
首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Electronic Structure Studies of Oxomolybdenum Tetrathiolate Complexes: Origin of Reduction Potential Differences and Relationship to Cysteine-Molybdenum Bonding in Sulfite Oxidase
【24h】

Electronic Structure Studies of Oxomolybdenum Tetrathiolate Complexes: Origin of Reduction Potential Differences and Relationship to Cysteine-Molybdenum Bonding in Sulfite Oxidase

机译:四硫代钼酸钼的电子结构研究:还原电位差的起源以及与亚硫酸盐氧化酶中半胱氨酸-钼键的关系。

获取原文
获取原文并翻译 | 示例

摘要

Electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies have been used to determine the nature of oxomolybdenum-thiolate bonding in (PPh_4)[MoO(SPh)_4] (SPh=phenylthiolate) and (HNEt_3)[MoO(SPh-PhS)_2] (SPh-PhS=biphenyl-2,2'-dithiolate). These compounds, like all oxomolybeenum tetraarylthiolate complexes previously reported, display an intense low-energy charge-transfer feature that we have now shown to be comprised of multiple S->Mo d_(xy) transitions. The integrated intensity of this low-energy band in [MoO(SPh)_4]~- is approximately twice that of [MoO(SPh-PhS)_2]~-, implying a greater covalent reduction of the effective nuclear charge localized on the molybdenum ion of the former and a concomitant negative shift in the Mo(V)/Mo(IV) reduction potential brought about by the differential S->Mo d_(xy) charge donation. However, this is not observed experimentally; the Mo(V)/Mo(IV) reduction potential of [MoO(SPh)_4]~- is approx 120 mV more positive than that of [MoO(SPh-PhS)_2]~-(-783 vs -900 mV). Additional electronic factors as well as structural reorganizational factors appear to play a role in these reduction potential differences. Density functional theory calculations indicate that the electronic contribution results from a greater #sigma#-mediated charge donation to unfilled higher energy molybdenum acceptor orbitals, and this is reflected in the increased energies of the [MoO(Sph-PhS)_2]~- ligand-to-metal char4ge-transfer transitions relative to those of [MoO(SPh)_4]~-. The degree of S-Mo d_(xy)covalency is a function of the O ident to Mo-S-C dihedral angle, with increasing charge donation to Mo d_(xy) and increasing charge-transfer intensity occurring as the dihedral angle decreases from 90 to 0dg. These results have implications regarding the role coordinated cysteine residue in sulfite oxidase. Although the O ident to Mo-S-C dihedral angles are either approx59 or approx121deg in these oximolybdenum tetraarylthiolate complexes, the crystal structure of the enzyme reveals an O ident to Mo-Sc_(ys)-C angle of approx90deg. Thus, a significant reduction in Sc_(ys) Mo d_(xy) covalency is anticipated in sulfite oxidase. This is postulated to preclude the direct involvement of coordinated cysteine in coupling the active site into efficient superexchange pathways for electron transfer, provided the O ident to Mo-Sc_(ys)-C angle is not dynamic during the course of catalysis. Therefore, we propose that a primary role for coordinated cysteine in sulfite oxidase is to statically poise the reduced molybdenum center at more negative reduction potentials in order to thermodynamically facilitate electron transfer from Mo(IV) to the endogenous b-type heme.
机译:电子吸收,磁性圆二色性和共振拉曼光谱已被用来确定(PPh_4)[MoO(SPh)_4](SPh = phenylthiolate)和(HNEt_3)[MoO(SPh-PhS) _2](SPh-PhS =联苯-2,2'-二硫代硫酸盐)。这些化合物与以前报道的所有含氧钼钼四芳基硫醇盐配合物一样,显示出强烈的低能电荷转移特征,我们现已证明它包含多个S-> Mo d_(xy)跃迁。 [MoO(SPh)_4]〜-中该低能带的积分强度大约是[MoO(SPh-PhS)_2]〜-的两倍,这意味着钼上有效核电荷的共价降低更大前者的离子和由S-> Mo d_(xy)的差分电荷捐赠引起的Mo(V)/ Mo(IV)还原电位的负迁移。然而,这不是实验观察到的。 [MoO(SPh)_4]〜-的Mo(V)/ Mo(IV)还原电位比[MoO(SPh-PhS)_2]〜-(-783 vs -900 mV)高约120 mV正。其他电子因素以及结构重组因素似乎在减少还原电位的差异中起作用。密度泛函理论计算表明,电子贡献来自更大的#sigma#介导的电荷捐赠给未填充的高能钼受体轨道,这反映在[MoO(Sph-PhS)_2]〜-配体的能量增加中相对于[MoO(SPh)_4]〜-的金属间金属转移跃迁。 S-Mo d_(xy)的共价度是O ident对Mo-SC二面角的函数,随着Mo d_(xy)的电荷贡献增加,并且随着二面角从90度减小到90度,电荷转移强度增加。 0dg。这些结果对于亚硫酸氧化酶中配位的半胱氨酸残基的作用具有影响。尽管在这些氧代钼四芳基硫醇盐络合物中,O-Mo-S-C二面角为约59°或约121°,但酶的晶体结构显示O-ident与Mo-Sc-(ys)-C角为约90°。因此,预期在亚硫酸盐氧化酶中Sc_(ys)Mo d_(xy)共价的显着降低。如果在催化过程中与Mo-Sc_(ys)-C角的O身份不动态,则这被假定为排除配位的半胱氨酸直接参与将活性位点耦合到有效的电子交换超级交换途径中。因此,我们建议在硫酸亚铁氧化酶中配位的半胱氨酸的主要作用是将还原的钼中心静态地保持在更大的负还原电位,以便热力学上促进电子从Mo(IV)转移至内源性b型血红素。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号