首页> 外文期刊>International Journal of Thermal Sciences >Heat transfer enhancement from a small rectangular channel with different surface protrusions by a turbulent cross flow jet
【24h】

Heat transfer enhancement from a small rectangular channel with different surface protrusions by a turbulent cross flow jet

机译:湍流横流射流增强了具有不同表面突起的矩形小通道的传热

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, thermo-hydrodynamic performance of a small rectangular channel with different protruded surfaces is investigated numerically in a three dimensional computational domain. An air jet impinging normal to the main flow is considered to enhance heat transfer rate. Conservation equations for mass, momentum and energy are solved using finite volume method with SST k-omega turbulence model. Three different protrusion shapes have been tested: rectangular, trapezoidal and triangular, respectively. The duct and nozzle Reynolds numbers are varied in the range of 17,831 <= Re-Dh,Re-duct <= 53,490 and 5,136 <= Re-Dh,Re-nz <= 11,980, respectively. Also, three different nozzle positions (X/D-h,D-duct = 8.717, 11.597 and 14.258) along the axial direction of rectangular duct have been considered to choose the best location for heat transfer enhancement. A higher heat transfer enhancement rate is observed at the nozzle position 2 (X/D-h,D-duct = 11.597) as compared to the other positions considered in this study. Flow recirculation in inter-protrusion spaces has also been discussed. In this hybrid cooling strategy, the pumping power requirement with protrusions is observed to be higher than that of without protrusions. The heat transfer enhancement rate with triangular protrusions is found to be more as compared to other protrusion shapes. (C) 2015 Elsevier Masson SAS. All rights reserved.
机译:在本研究中,在三维计算域中对具有不同凸出表面的小矩形通道的热流体动力学性能进行了数值研究。垂直于主流撞击的空气流被认为可以提高传热速率。利用SSTk-ω湍流模型,采用有限体积法求解质量,动量和能量守恒方程。测试了三种不同的突起形状:分别为矩形,梯形和三角形。管道和喷嘴的雷诺数分别在17,831 <= Re-Dh,Re-duct <= 53,490和5,136 <= Re-Dh,Re-nz <= 11,980的范围内变化。另外,已经考虑了沿着矩形管的轴向的三个不同的喷嘴位置(X / D-h,D-管道= 8.717、11.597和14.258)来选择最佳位置以增强传热。与本研究中考虑的其他位置相比,在喷嘴位置2处观察到更高的传热增强率(X / D-h,D-duct = 11.597)。还讨论了突起间空间中的流体再循环。在这种混合冷却策略中,观察到带有突起的泵浦功率要求要高于没有突起的泵浦功率要求。发现与其他突起形状相比,具有三角形突起的传热增强率更高。 (C)2015 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号