首页> 外文期刊>International Journal of Thermophysics >Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading
【24h】

Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

机译:机械载荷下质子交换膜燃料电池和电解槽气体扩散层的热导特性

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m~(-1) · K~(-1)) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 < p < 8 MPa which corresponds to stresses arising in fuel cells. All obtained experimental results have been fitted by the equation λ = 0.9log(12p + 17)(1 - 0.4e~(-50p)) with 9% uncertainty. The obtained experimental dependence can be used for correct modeling of coupled thermo/electro-mechanical phenomena in fuel cells and electrolyzers. Special attention has been devoted to justification of the main hypotheses of the THW method and for estimation of the possible influence of the contact resistances. For this purpose, measurements with a different number of carbon cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.
机译:对于质子交换膜燃料电池(PEMFC)和PEM电解槽,有关温度场和相关传热速率的准确信息尤为重要。燃料电池和电解槽性能分析中的重要参数是作为固体多孔介质的气体扩散层(GDL)的有效导热系数。通常,此参数是在建模和性能分析中引入的,而没有考虑GDL导热系数λ(在W·m〜(-1)·K〜(-1)中)对机械压缩的依赖性。但是,操作系统中产生的机械应力会显着改变导热性和热交换。在这项研究中,使用瞬态热线技术(THW)已开发出可以根据所施加的机械压缩来表征GDL导热系数的计量学。该方法是获取流体中标准参考数据的最佳方法,但很少用于固体中的热导率测量。 Quintech碳布提供的实验表明,热导率λ对所施加的机械负载有很强的依赖性(高达300%)。已经在与燃料电池中产生的应力相对应的0 <8 MPa压力范围内进行了实验。所有获得的实验结果均由方程λ= 0.9log(12p + 17)(1- 0.4e〜(-50p))拟合,不确定度为9%。所获得的实验依赖性可用于燃料电池和电解槽中耦合的热/机电现象的正确建模。已经特别关注了THW方法主要假设的合理性以及对接触电阻可能影响的估计。为此目的,已经提供了具有不同数量的碳布层的测量。进行的实验表明,所测得的热导率与GDL层数无关,因此证明了针对此类应用开发的方法和设备的耐用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号