...
首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite
【24h】

Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite

机译:热处理Westerly花岗岩在高裂纹密度下的断裂韧度和弹性波速度的耦合演化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A series of 20 chevron cracked notched Brazilian disc (CCNBD) samples of Westerly granite were failed in a standard Mode I tensile test at room temperature in order to evaluate the effect of thermal damage on fracture toughness. The heat treatment involved slowly heating four sets of four samples to 250, 450, 650 and 850 deg C. The fifth set of samples was not thermally treated. Thermal cracking not only induced a substantial decrease of the mechanical strength, but also of the dynamic elastic properties of Westerly granite. In particular, normalized P-wave compressional velocities matched remarkably well the decreasing trend of normalized fracture toughness (K_(IC)). Above 450 deg C, grain boundary opening and cracking, intragranular cracking and mineral grain dissection linked to the quartz alpha-beta phase transition induced a significant increase in the total crack density. Fracture path interaction with various mineral-mineral contact types showed that fracture branching and total fracture length increased with the amount of temperature of heat treatment. Using non-interactive crack theories, dimensionless crack densities were obtained from wave velocity inversion, up to unusually high values of approx 10 at 850 deg C. This geophysical analysis showed to be in close agreement with crack parameters determined optically, such as optical crack density determination, crack aspect ratio evolutions, and the measured sample porosity with temperature. Our results also show that only the non-interactive crack theory can predict K_(IC) relatively well at high crack density, by simply using dimensionless crack densities inverted from velocities. A decrease of 50 percent for crack densities larger than 1, 80 percent for crack densities larger than 5 is predicted, in close agreement with our observed experimental variation of K_(IC). At the microscale, this can be interpreted by the fact that the main fracture is strongly interacting with the pre-existing microcrack fabric. These combined experimental and modeling results illustrate the importance of understanding the details of how the rock microstructure is changing in response to an external stimulus, in order to predict the simultaneous evolution of physical and mechanical properties of rock.
机译:为了评估热损伤对断裂韧性的影响,在室温下的标准I型拉伸试验中,一系列20个Westerly花岗岩的人字形裂纹巴西圆盘(CCNBD)样品未通过。热处理涉及将四组四个样品缓慢加热至250、450、650和850℃。第五组样品未经热处理。热裂纹不仅引起机械强度的显着降低,而且引起了Westerly花岗岩的动态弹性。特别是,归一化的P波压缩速度与归一化的断裂韧性(K_(IC))的下降趋势非常吻合。在450℃以上,与石英α-β相变有关的晶界开裂和裂纹,晶内裂纹和矿物晶粒的剥离引起总裂纹密度的显着增加。断裂路径与各种矿物-矿物接触类型的相互作用表明,随着热处理温度的升高,断裂分支和总断裂长度增加。使用非交互式裂纹理论,从波速反演获得了无量纲的裂纹密度,在850℃时高达10的异常高的值。这种地球物理分析表明,与光学确定的裂纹参数(例如光学裂纹密度)非常一致确定,裂纹纵横比的演变以及所测得的样品孔隙度随温度的变化。我们的研究结果还表明,仅通过使用从速度倒置的无量纲裂纹密度,只有非交互式裂纹理论才能在高裂纹密度下相对较好地预测K_(IC)。预计裂纹密度大于1时会降低50%,裂纹密度大于5时会降低80%,这与我们观察到的K_(IC)实验变化非常吻合。在微观上,这可以通过以下事实来解释:主要裂缝与先前存在的微裂纹织物强烈相互作用。这些组合的实验和建模结果说明了了解岩石微观结构如何响应外部刺激而变化的细节的重要性,以便预测岩石的物理和机械特性的同时演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号