首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Estimation of elastic compliance matrix for fractured rock masses by composite element method
【24h】

Estimation of elastic compliance matrix for fractured rock masses by composite element method

机译:复合单元法估算裂隙岩体弹性柔度矩阵

获取原文
获取原文并翻译 | 示例
           

摘要

Similar to the fluid permeability problem [1], the deformation problem of fractured rock masses can make use of either implicit (equivalent continuum) approach [2-4] or explicit (discrete) approach [5,6]. The former takes into account the influences of fractures by means of the elastic (compliance) matrix but neglects their exact positions, and is able to simulate fractures of large quantity; the latter considers the geological and mechanical properties of each fracture deterministically, and is often adopted for large-scaled fractures. The need to use, for a particular problem, implicit or explicit approach depends on the size (or scale) of the fractures with respect to the scale of the problem that needs to be solved. There are no universal quantitative guidelines to determine when one approach should be used instead of the other [7].The applicability of implicit approach for the deformation problem of the fractured rock masses is linked to the existence of elastic compliance matrix and representative element volume (REV). The quantitative solution for this issue usually should be obtained through physical tests (laboratory and field). In recent years the numerical techniques are also developed for the evaluation of the permeability tensor [8-11] and elastic compliance matrix [12-14] of the fractured rock masses. The algorithm is a kind of numerical test system (NTS) and is generally formulated as follows: first, a discrete fracture network in a sampling window is generated, which will be used as the parent stochastic discrete fracture network (DFN); next, a series of fractured rock blocks with different sizes and orientations are defined as test samples for each stochastic DFN; then the numerical methods (e.g. FEM or DEM) are applied to the fractured rock samples to evaluate their fluid flow fields or deformation fields; finally the permeability matrices or elastic compliance matrices of the samples are obtained and the existence of REV is identified.
机译:与流体渗透率问题[1]相似,裂隙岩体的变形问题可以采用隐式(等效连续体)方法[2-4]或显式(离散)方法[5,6]。前者通过弹性(顺应性)矩阵考虑了裂缝的影响,却忽略了它们的确切位置,并且能够模拟大量的裂缝。后者确定性地考虑了每个裂缝的地质和力学特性,并且通常用于大型裂缝。对于特定问题,使用隐式或显式方法的需要取决于相对于需要解决的问题的规模的裂缝大小(或规模)。没有通用的定量准则来确定何时应使用一种方法代替另一种方法[7]。隐式方法在裂隙岩体变形问题中的适用性与弹性柔度矩阵和代表性单元的存在有关( REV)。通常应通过物理测试(实验室和现场)获得针对此问题的定量解决方案。近年来,还开发了数值技术来评估裂隙岩体的渗透率张量[8-11]和弹性柔度矩阵[12-14]。该算法是一种数值测试系统(NTS),其一般公式如下:首先,在采样窗口中生成离散裂缝网络,将其用作父级随机离散裂缝网络(DFN)。接下来,将一系列具有不同大小和方向的裂隙岩块定义为每个随机DFN的测试样本;然后将数值方法(例如FEM或DEM)应用于裂缝岩样以评估其流体流场或变形场;最后,获得了样品的渗透率矩阵或弹性柔度矩阵,并确定了REV的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号