首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >An improved method for numerically modeling the minimum horizontal stress magnitude in extensional stress regimes
【24h】

An improved method for numerically modeling the minimum horizontal stress magnitude in extensional stress regimes

机译:数值模拟拉伸应力状态下最小水平应力大小的改进方法

获取原文
获取原文并翻译 | 示例
           

摘要

The minimum horizontal stress magnitude, S_(hmin), is a crucial input parameter for a variety of subsurface engineering applications. Several methods, such as the general poro-elastic model, the uni-axial strain model and the concept of frictional equilibrium can be used to simulate S_(hmin) whereby the general poro-elastic model is most commonly used due to its capability to account for tectonic strain in order to match existing stress measurements. If stress measurement data is unavailable this paper introduces a pre-stressing procedure For 3D numerical Mechanical Earth Models that combines the poro-elastic mode! with the frictional equilibrium model to provide lower bounds for S_(hmin) in extensional stress regimes. Assuming common friction coefficients of μ in the range of 0.57 to 1, the necessary horizontal strain can be calculated to limit horizontal stress magnitudes of the whole model domain or of only certain calibration layers by frictional failure. For layers with Poisson's ratios smaller or larger than 0.25, S_(hmin) magnitudes being too low or too high (as predicted by the uni-axial strain model) can thus be prevented. The presented concept is tested for two case studies and the modeling results show that the combination of the poro-elastic model with the frictional equilibrium model can provide a good match to the measured data, even if it is assumed that the calibration data is not available. It is concluded that the combination of the two deformation mechanisms can produce a more physically appealing stress profile and hence may more accurately simulate the sense and relative magnitude of layer-to-layer stress contrasts. In addition, the numerical modeling approach presented can match observations on the near surface variation of the ratio k=S_(hmin)/S_v.
机译:最小水平应力量S_(hmin)是各种地下工程应用的关键输入参数。通用孔隙弹性模型,单轴应变模型和摩擦平衡的概念等多种方法可用于模拟S_(hmin),其中通用孔隙弹性模型由于具有计算能力,因此最常用构造应变,以匹配现有的应力测量。如果无法获得应力测量数据,则本文将结合孔隙弹性模式的3D数值机械地球模型引入预应力程序!用摩擦平衡模型为拉伸应力状态下的S_(hmin)提供下界。假设常见的摩擦系数μ在0.57到1的范围内,则可以计算必要的水平应变,以通过摩擦破坏来限制整个模型域或仅某些校准层的水平应力大小。对于泊松比小于或大于0.25的层,可以防止S_(hmin)幅度太低或太高(如单轴应变模型所预测)。对提出的概念进行了两个案例研究,建模结果表明,即使假设校准数据不可用,孔隙弹性模型与摩擦平衡模型的组合也可以与测量数据很好地匹配。 。结论是,两种变形机制的组合可以产生更具物理吸引力的应力分布,因此可以更准确地模拟层间应力对比的意义和相对大小。另外,提出的数值建模方法可以匹配对比率k = S_(hmin)/ S_v的近表面变化的观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号