首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Identification of early-warning key point for rockmass instability using acoustic emission/microseismic activity monitoring
【24h】

Identification of early-warning key point for rockmass instability using acoustic emission/microseismic activity monitoring

机译:利用声发射/微震活动监测确定岩体失稳的预警关键点

获取原文
获取原文并翻译 | 示例
           

摘要

Rockmass is a complex elastoplastic geological body. Under external loads, macroscopic failure is produced through cracks within a variety of micro-crack formations. In the process of rockmass instability, it is accompanied with crystal disloca-tion, crystals slip, elastoplastic deformation, crack initiation, and propagation until instability occurs. Simultaneously, energy is released in the form of stress waves. Stress wave techniques, such as acoustic emission (AE) and microseismic (MS) monitoring, have been used for many decades to study the fracturing behavior of rocky materials. AE uses transient waves emitted by the initiation and propagation of cracks when a material is under stress [1]. In the 1930s, Obert and Duvall discovered AE event activity from the internal structure of rock under pressure; explosive AE events were monitored in the Amick copper mine in 1940 to predict the advent of rockburst [2]. This phenomenon shows that the physical and mechanical properties of rock material itself are closely related to the loading process and mechanism. AE phenomena vary with the nature of the rock material and loading methods. Regarding AE activity rate characteristics throughout the entire process of rock failure, several researchers have focused on rock compression, tension, shear and fracture testing [3-7]. These researchers intensively studied the relationship between stress, strain, and AE parameters before rock peak intensity. Several studies reported the characteristics of the relatively quiet period of AE before rock failure [8-10]. The characteristics of MS events activity rate and b-value change of rockmass instability was successfully obtained through 6 stope collapses in deep mining [11].
机译:岩体是一个复杂的弹塑性地质体。在外部载荷下,宏观的破坏是由各种微裂纹形成中的裂纹产生的。在岩体失稳的过程中,它伴随着晶体错位,晶体滑移,弹塑性变形,裂纹萌生和扩展,直到发生不稳定为止。同时,能量以应力波的形式释放。应力波技术,例如声发射(AE)和微震(MS)监测,已经被使用了数十年,以研究岩石材料的断裂行为。当材料处于应力下时,AE使用由裂纹的萌生和扩展所发出的瞬态波[1]。在1930年代,Obert和Duvall从受压岩石的内部结构中发现了AE事件活动。 1940年,在Amick铜矿中监测了爆炸性AE事件,以预测岩爆的到来[2]。这种现象表明,岩石材料本身的物理和机械性能与加载过程和机理密切相关。声发射现象随岩石材料的性质和加载方法的不同而不同。关于整个岩石破坏过程中的AE活度特征,一些研究人员集中于岩石的压缩,拉伸,剪切和断裂测试[3-7]。这些研究人员集中研究了岩石峰值强度之前的应力,应变和AE参数之间的关系。几项研究报告了岩石破裂前AE相对安静期的特征[8-10]。通过深部开采的6个采场塌陷成功地获得了MS事件活动率和岩体失稳的b值变化的特征[11]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号