...
首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Three-zone characterisation of coupled strata and gas behaviour in multi-seam mining
【24h】

Three-zone characterisation of coupled strata and gas behaviour in multi-seam mining

机译:多煤层开采中地层和瓦斯耦合行为的三区特征

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose here a three-zone conceptual model in overlying strata of a longwall panel that accounts for the coupled behaviour of strata deformation and gas flow. The model comprises a fractured gas-Intel flow zone, a de-stressed gas-desorption zone, and a confined gas-adsorption zone. The fractured gas-Intel flow zone represents the area where mining-induced cross-strata fractures and bedding separations are well developed with high permeability in both the vertical and horizontal directions. Coal seam gas can easily be released from this lower zone to flow down into the mine workings. The de-stressed gas-desorption zone, which lies above the fractured gas-interflow zone, is another significant gas-producing zone in which strata are highly de-stressed. However, mining-induced fractures in this zone are mainly created in the form of bedding separations, which only increase horizontal permeability, and thus the gas cannot easily flow vertically down to the mine workings. In the upper confined gas-adsorption zone, strata depressurisation is limited; the major proportion of coal seam gas in this zone remains adsorbed and cannot be effectively captured. While both lower zones are the targets of gas drainage, the fractured gas-interflow zone is the main source of ventilation gas emission and the prime area of gas control. We have developed an approach to determine the height of these three zones based on the hypothesis of key stratum in strata movement, and verified the approach using gas drainage experience at a Chinese coal mine. The applications of the three-zone concept in selecting appropriate gas drainage methods for varied mining conditions, assessment of methane recovery efficiency, and gas drainage optimisation and maximisation in a mining district of China are also discussed. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们在这里提出了一个长壁面板上覆地层的三区域概念模型,该模型解释了地层变形和气流的耦合行为。该模型包括一个压裂的气体-英特尔流动区,一个减压的气体解吸区和一个受限的气体吸附区。破裂的气体-英特尔流动区代表了一个很好的区域,该区域在垂直和水平方向上均具有较高的渗透率,从而很好地形成了采矿引起的地层裂缝和地层分离。煤层气可以很容易地从下部区域释放出来,然后向下流到矿井中。位于压裂气体互通区上方的减压天然气解吸区是另一个重要的产气区,其中地层高度减压。但是,该区域的采矿引起的裂缝主要以层理分隔的形式产生,这仅会增加水平渗透率,因此气体不易垂直向下流至矿井。在上部密闭气体吸附区,地层减压是有限的。该区域的大部分煤层气仍被吸附,无法被有效捕获。虽然两个下部区域都是瓦斯抽放的目标,但裂缝性气体互通带是通风气体排放的主要来源,也是气体控制的主要区域。我们基于地层运动关键层的假设,开发了一种确定这三个区域高度的方法,并利用中国煤矿的瓦斯抽采经验验证了该方法。还讨论了三区概念在选择适合各种采矿条件的瓦斯抽采方法,评估甲烷采收率以及在中国矿区瓦斯抽采优化和最大化方面的应用。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号