首页> 外文期刊>International Journal of Pressure Vessels and Piping >Modelling the manufacturing history, through life creep-fatigue damage and limiting defect sizes of a pipework joint using finite element based methods
【24h】

Modelling the manufacturing history, through life creep-fatigue damage and limiting defect sizes of a pipework joint using finite element based methods

机译:使用基于有限元的方法通过寿命蠕变疲劳损伤和限制管道接头的缺陷尺寸来建模制造历史

获取原文
获取原文并翻译 | 示例
           

摘要

The work reported in this paper describes a simulation of the manufacture, through-life operation and limiting defect size assessment of a pipework joint in a nuclear powerplant boiler. The objective of this work is to understand the critical factors that influence the integrity of the joint in-service and support accurate predictions of service life. This work differs from typical structural integrity assessments in that advanced modelling techniques have been used throughout the assessment process and include detailed simulations of the manufacturing process, a simulation of the entire in-service operating history including predictions of creep-fatigue damage and cracked body analysis to determine limiting defect sizes. Residual stresses resulting from the manufacturing process can be a key driver for creep and creep-fatigue damage. The calculation of creep-fatigue damage for assessment purposes is typically under-taken within the framework of an appropriate assessment code, such as EDF Energy's R5. The standard assessment approach usually requires calculation of stresses using elastic finite element analysis followed by hand calculations to calculate the damage. A combination of explicit and implicit finite element methods are employed to simulate a range of manufacturing processes which influence the in-service structural integrity of a branched pipework joint. Where available, test data have been compared to the results to assess the validity of the simulation. The simulation results then feed into a finite element based structural integrity assessment. The methods follow the principles outlined in the EDF Energy R5 assessment code but use the inelastic strains calculated directly from analysis. The methods are based around the general purpose finite element code Abaqus. The residual stresses generated during manufacture may adversely affect the critical defect sizes for the pipework joint. However, the complex geometry and loading complicate the assessment of the cracked body. Therefore, a finite element analysis representing the cracked body has been carried out on the pipework joint to evaluate the J-integrals at the locations of interest and hence calculate the critical defect sizes. The analysis considers the residual stresses determined from the finite element analysis of the manufacturing processes.
机译:本文报道的工作描述了核电站锅炉管道连接的制造,全寿命运行和极限缺陷尺寸评估的仿真。这项工作的目的是了解影响联合服役完整性的关键因素,并支持对使用寿命的准确预测。这项工作与典型的结构完整性评估的不同之处在于,在整个评估过程中都使用了先进的建模技术,包括对制造过程的详细模拟,对整个使用中的运行历史的模拟,包括对蠕变疲劳损伤的预测以及对裂纹的分析。确定极限缺陷尺寸。制造过程中产生的残余应力可能是蠕变和蠕变疲劳损伤的关键驱动因素。通常在适当的评估代码(例如EDF Energy的R5)框架内进行用于评估目的的蠕变疲劳损伤的计算。标准评估方法通常需要使用弹性有限元分析来计算应力,然后通过手工计算来计算损伤。显式和隐式有限元方法的组合被用来模拟一系列制造过程,这些过程会影响支管接头在役结构的完整性。在可用的情况下,将测试数据与结果进行比较,以评估模拟的有效性。然后将模拟结果输入到基于有限元的结构完整性评估中。这些方法遵循EDF Energy R5评估代码中概述的原理,但是使用直接从分析中计算出的非弹性应变。这些方法基于通用有限元代码Abaqus。在制造过程中产生的残余应力可能会对管道接头的关键缺陷尺寸产生不利影响。但是,复杂的几何形状和载荷使裂纹体的评估变得复杂。因此,已经在管道接头上进行了代表裂纹体的有限元分析,以评估感兴趣位置的J积分,从而计算出关键缺陷尺寸。该分析考虑了由制造过程的有限元分析确定的残余应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号