...
首页> 外文期刊>International Journal of Plasticity >Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: Image-based model with experimental validation
【24h】

Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: Image-based model with experimental validation

机译:钛合金在一系列应变率下的晶体塑性有限元建模。第二部分:具有实验验证的基于图像的模型

获取原文
获取原文并翻译 | 示例
           

摘要

The second of this two-part paper develops an image-based crystal plasticity finite element model for simulating hcp metals deforming at a wide of range of strain-rates. It incorporates a unified flow rule based crystal plasticity constitutive model, combining the thermally-activated and drag-dominated stages of dislocation glide, proposed in part I (Shahba and Ghosh, 2016). The image-based CPFE uses 3D statistically-equivalent virtual microstructures that are constructed by stereology and statistics from 2D surface EBSD maps. The statistically equivalent virtual microstructures are constructed for the Ti-7Al alloy in as-rolled (AR) and rolled-annealed (RA) conditions. The virtual microstructures are discretized into, 3D tetrahedral elements that are stabilized to yield locking-free large deformation FE results. This paper demonstrates the competency of the model for simulating deformation of the polycrystalline Ti-7Al alloy microstructures under quasi-static and high rates of deformation. Room temperature compression tests at quasi-static (10(-3)s(-1)) and dynamic strain rates (1000-4000s(-1)) are performed and used to calibrate and validate the constitutive model. The simulations reveal that the decrease in the hardening rate is significant under adiabatic conditions due to the promotion of slip-driven plasticity. The effect of degradation of elastic constants with temperature on the macroscopic behavior is noticeable only at the later stages of deformation. A study on adiabatic heating reveals that grains undergoing severe plastic deformation do not necessarily yield higher temperatures. In contrast, grains that are less favorably oriented for dislocation slip could experience higher adiabatic heating due to higher local stresses. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这个由两部分组成的文章的第二部分开发了基于图像的晶体可塑性有限元模型,用于模拟hcp金属在很大的应变率范围内变形。它结合了基于流动规则的统一的晶体可塑性本构模型,结合了在第一部分中提出的热活化和以阻力为主的位错滑移阶段(Shahba和Ghosh,2016)。基于图像的CPFE使用3D统计等效的虚拟微结构,这些虚拟微结构是根据2D表面EBSD映射的立体感和统计数据构建的。为Ti-7Al合金在轧制(AR)和轧制退火(RA)条件下构建了统计上等效的虚拟微结构。虚拟微结构被离散为3D四面体元素,这些元素被稳定化以产生无锁定的大变形FE结果。本文证明了该模型在准静态和高变形率下模拟多晶Ti-7Al合金微结构变形的能力。进行了在准静态(10(-3)s(-1))和动态应变率(1000-4000s(-1))下的室温压缩测试,并用于校准和验证本构模型。模拟结果表明,由于滑移驱动塑性的提高,在绝热条件下硬化速率的降低是显着的。弹性常数随温度的下降对宏观行为的影响只有在变形的后期才明显。绝热加热的研究表明,经历严重塑性变形的晶粒不一定会产生更高的温度。相比之下,由于位错应力较高,对于位错滑移取向较差的晶粒可能会发生较高的绝热加热。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号