...
首页> 外文期刊>International Journal of Plasticity >Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms
【24h】

Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms

机译:使用快速傅立叶变换对两相材料的粘塑性微机械响应进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain-rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain-rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain-rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain-rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain-rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles.
机译:利用快速傅里叶变换(FFT)方法获得局部机械响应的粘塑性方法被用来研究复合材料中的微观结构与属性之间的关系。具体而言,通过动力学Monte Carlo Potts模型生成的用于奥斯特瓦尔德熟化的三维两相数字材料包含被基质相包围的各向同性粗化颗粒,用作实例化,以便计算单轴下的应力和应变率场张力。研究了基体相的形态,颗粒的体积分数和连续性以及基体相的多结晶度对单轴张力下的应力和应变率场的影响。发现应力和应变率场的第一矩从第二矩起对颗粒体积分数和颗粒连续性的依赖程度不同。两相和整个复合材料的平均应力和平均应变率与颗粒体积分数之间的关系非常简单,而它们的标准偏差变化很大,尤其是当颗粒体积分数高时,并且颗粒的连续性会产生明显的影响在机械响应上。还发现,随着复合物中颗粒体积分数的变化,BCC硬质颗粒相中的应力分布形状发生变化,从而随着颗粒体积趋于一致,它与BCC多晶中的应力场相符。最后,观察到具有多晶基质的微结构中的应力和应变率场对颗粒的体积分数和连续性的变化较不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号