...
首页> 外文期刊>International Journal of Plasticity >A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation
【24h】

A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation

机译:橡胶增韧玻璃态聚合物有限变形过程中各向异性损伤的基于物理的本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

The present work focuses on the development of a physically-based model for large deformation stress-strain response and anisotropic damage in rubber-toughened glassy polymers. The main features leading to a microstructural evolution (regarding cavitation, void aspect ratio, matrix plastic anisotropy and rubbery phase deformation) in rubber-toughened glassy polymers are introduced in the proposed constitutive model. The constitutive response of the glassy polymer matrix is modelled using the hyperelastic-viscoplastic model of Boyce et al. (1988, 2000). The deformation mechanisms of the matrix material are accounted for by two resistances: an elastic-viscoplastic isotropic intermolecular resistance acting in parallel with a visco-hyperelastic anisotropic network resistance, each resistance being modified to account for damage effects by void growth with a variation of the void aspect ratio. The effective contribution of the hyperelastic particles to the overall composite behaviour is taken into account by treating the overall system in a composite scheme framework. The capabilities of the proposed constitutive model are checked by comparing experimental data with numerical simulations. The deformation behaviour of rubber-toughened poly(methyl methacrylate) was investigated experimentally in tension at a temperature of 80 °C and for different constant true strain rates monitored by a video-controlled technique. The reinforcing phase is of the soft core-hard shell type and its diameter is of the order of one hundred nanometers. The particle volume fraction was adjusted from 15% to 45% by increments of 5%. The stress-strain response and the inelastic volumetric strain are found to depend markedly on particle volume fraction. For a wide range of rubber volume fractions, the model simulations are in good agreement with the experimental results. Finally, a parametric analysis demonstrates the importance of accounting for void shape, matrix plastic anisotropy and rubber content.
机译:目前的工作集中在为橡胶增韧玻璃态聚合物中的大变形应力-应变响应和各向异性损伤建立基于物理的模型。在本构模型中,介绍了导致橡胶增韧的玻璃态聚合物微观结构演变的主要特征(关于空化,空隙纵横比,基体塑性各向异性和橡胶相变形)。玻璃态聚合物基体的本构响应是使用Boyce等人的超弹-粘塑性模型建模的。 (1988,2000)。基体材料的变形机制由两个阻力引起:弹性-粘塑性各向同性分子间阻力与粘-超弹性各向异性网络阻力并行作用,每个阻力都经过修改,以解决空隙增长引起的损伤效应,并随应力的变化而变化。无效纵横比。通过在复合方案框架中处理整个系统,可以考虑到超弹性颗粒对整体复合行为的有效贡献。通过将实验数据与数值模拟进行比较,可以检验所提出的本构模型的功能。实验研究了橡胶增韧的聚(甲基丙烯酸甲酯)在80°C的张力下的变形行为,并通过视频控制技术监测了不同的恒定真实应变率。增强相为软核-硬壳型,其直径为一百纳米。颗粒体积分数以15%的增量从15%调整到45%。发现应力-应变响应和非弹性体积应变明显取决于颗粒体积分数。对于各种各样的橡胶体积分数,模型仿真与实验结果非常吻合。最后,参数分析证明了考虑空隙形状,基质塑性各向异性和橡胶含量的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号