首页> 外文期刊>International Journal of Plasticity >A novel approach for anisotropic hardening modeling. Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material
【24h】

A novel approach for anisotropic hardening modeling. Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material

机译:各向异性硬化建模的新方法。第二部分:按比例和非比例载荷的各向异性硬化,应用于最初的各向同性材料

获取原文
获取原文并翻译 | 示例
           

摘要

The modeling of anisotropic hardening, in particular for non-proportional loading paths, is a challenging task for advanced macroscopic models. The complex distortion of the yield locus is related to the activation and cross-hardening of different slip systems, depending on crystallographic orientations. These physical mechanisms can be taken into account in polycrystalline models but the computation times are enormous. The novel approach detailed in Part I (Rousselier et al., 2009) consists in: (i) drastically reducing the number of crystallographic orientations to save the computation cost, (ii) applying a parameter calibration procedure to obtain a good agreement with the experimental database. This methodology is first applied here to the anisotropic hardening in the proportional loadings of the strongly anisotropic aluminum alloy of Part I. Very good modeling is achieved with only eight crystallographic orientations. Different levels of additional hardening in biaxial proportional loading as compared to uniaxial loading can be modeled with the same polycrystalline model. For this, only the parameter calibration has to be performed with different databases. The same methodology has also been applied for the modeling of isotropic behavior. The best compromise between model accuracy and numerical cost is obtained with fourteen orientations. The deviations from isotropy are acceptable in all loading directions. Different levels of hardening in orthogonal loading: simple shear followed by simple tension, are achieved without any modification of the model equations. Only the parameter calibration has to be performed with different hardening levels in the database. FE calculations of a deep drawing test have been performed. The CPU time of the polycrystalline model is only five times larger than that with the simple von Mises model. The CPU time with texture evolution is further increased by a factor of two. The effects of texture evolution in rolling of the initially isotropic fcc material have been investigated. The resulting texture and hardening are qualitatively good.
机译:各向异性硬化的建模,特别是对于非比例加载路径的各向异性硬化,对于高级宏观模型而言是一项艰巨的任务。屈服轨迹的复杂畸变与不同滑模系统的激活和交叉硬化有关,具体取决于晶体学取向。在多晶模型中可以考虑这些物理机制,但是计算时间非常长。第一部分(Rousselier等,2009)中详细介绍的新颖方法包括:(i)大幅减少晶体取向的数量以节省计算成本,(ii)应用参数校准程序以获得与实验的良好一致性数据库。此方法首先在此应用到零件I的强各向异性铝合金的比例载荷中的各向异性硬化。仅通过八个晶体学取向就可以实现很好的建模。与单轴载荷相比,双轴比例载荷中不同程度的附加硬化可以使用相同的多晶模型进行建模。为此,仅参数校准必须与其他数据库一起执行。相同的方法也已用于各向同性行为的建模。在14个方向上可以获得模型精度和数值成本之间的最佳折衷。各向同性的偏差在所有加载方向上都是可以接受的。在不对模型方程式进行任何修改的情况下,即可实现正交加载中不同程度的硬化:简单的剪切和简单的拉伸。只有参数校准必须在数据库中以不同的强化级别执行。进行了深冲试验的有限元计算。多晶模型的CPU时间仅比简单von Mises模型的CPU时间大五倍。具有纹理演变的CPU时间进一步增加了两倍。已经研究了织构演变对最初各向同性fcc材料的轧制的影响。所得到的质感和硬化在质量上是良好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号