...
首页> 外文期刊>International Journal of Plasticity >Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change
【24h】

Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change

机译:考虑塑性体积变化的材料的Eshelby应力引起的有限应变弹塑性

获取原文
获取原文并翻译 | 示例
           

摘要

In consideration of materials capable of undergoing significant plastic changes in volume, an alternative finite strain hyper-elastoplastic constitutive framework is proposed in terms of the Eshelby stress. Taking a phenomenological point of view, a thermodynamically consistent approach to developing the constitutive equations is presented and discussed. Various Eshelby-like stresses are defined and shown to be energy-conjugate to the plastic velocity gradient, and a general framework is formulated in the stress-free/plasticallydeformed intermediate configuration associated with the multiplicative split of the deformation gradient, as well as the current configuration. A novel Eshelby-like stress measure is proposed, which is scaled by the elastic Jacobian, and is shown to be energy conjugate to the plastic velocity gradient in the spatial representation. Modified Cam Clay and Drucker Prager cap plasticity constitutive equations are introduced, and large strain isotropic compression simulations are performed and compared with experimental measurements. The model results are compared with standard approaches formulated in terms of the Mandel and Kirchhoff stresses, which are shown to require the assumption of isochoric plasticity to satisfy the Clausius Planck inequality (Mandel) and preserve that the intermediate configuration remains stress-free (Kirchhoff). The simulations show that both the material and spatial Eshelby-like stress measures presented here produce the same mean Cauchy stress results; whereas, standard formulations, which make use of isochoric plasticity assumptions, diverge from each other at significant plastic volume strains. Standard formulations are further shown to violate the second law of thermodynamics under certain loading conditions. Calibration of model parameters to high pressure isotropic compression of Boulder clay is used to compare the various models. (C) 2015 Elsevier Ltd. All rights reserved.
机译:考虑到能够在体积上发生显着塑性变化的材料,就埃舍尔比应力提出了另一种有限应变超弹塑性本构框架。从现象学的观点出发,提出并讨论了一种热力学一致的方法来发展本构方程。定义了各种类似于Eshelby的应力,并表明它们与塑性速度梯度呈能量共轭关系,并且在无应力/塑性变形的中间构型(与变形梯度的乘积拆分和电流相关)中制定了通用框架。组态。提出了一种新颖的类似于埃舍尔比的应力测量方法,该方法通过弹性雅可比定律进行缩放,并在空间表示中被证明与塑性速度梯度共轭。引入了改进的Cam Clay和Drucker Prager盖塑性本构方程,并进行了大应变各向同性压缩模拟,并与实验测量结果进行了比较。将模型结果与根据Mandel和Kirchhoff应力制定的标准方法进行比较,结果表明需要等速可塑性来满足克劳修斯·普朗克不等式(Mandel),并保留中间构型保持无应力(Kirchhoff) 。模拟显示,此处介绍的材料和类似Eshelby的空间应力测量均产生相同的平均柯西应力结果;其结果如表1所示。然而,利用等速可塑性假设的标准配方在很大的塑性体积应变下彼此不同。进一步显示标准配方在某些负载条件下违反了热力学第二定律。将模型参数校准为Boulder粘土的高压各向同性压缩,以比较各种模型。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号