首页> 外文期刊>International Journal of Plasticity >Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy
【24h】

Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy

机译:大塑性变形行为的应变速率和温度敏感多级晶体塑性模型:在AZ31镁合金中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we develop a multi-level constitutive model for polycrystalline metals that deform by a combination of elasticity, slip and deformation twinning. It involves a two level homogenization scheme, where the first level uses an upper bound Taylor-type crystal plasticity (T-CP) theory to relate the single-crystal scale to the polycrystal meso-scale and the second level employs an implicit finite elements (FE) approach to relate the meso-scale to the macro-scale. The latter relaxes the iso-strain constraints imposed by the Taylor model. As such, we name the model T-CPFE. At the single crystal level, the model features a dislocation-based hardening law providing the activation stresses that governs slip activity within the single crystals. For deformation twinning, it contains an advancement of a composite grain model that retains the total Lagrangian formulation. Here we use the T-CPFE model to analyze the mechanical response and microstructure evolution of extruded AZ31 Mg alloy samples in simple compression, tension, and torsion under strain rates ranging from 10(-4) s(-1) to 3000 s(-1) and temperatures ranging from 77 K to 423 K reported in Kabirian et al. (2015). Taking the experimentally measured initial texture and average grain size as inputs, the model successfully captures stress-strain responses, deformation texture evolution and twin volume fraction using a single set of material parameters associated with the thermally activated rate laws for dislocation density. The distinctions in flow stress evolution among the loading conditions result from differing relative amounts of slip and twinning activity, which the model internally adjusts based on evolution of slip and twin resistances in the response to the imposed loading conditions. Finally, we show that the T-CPFE model predictions of geometrical changes during compression compare favorably with corresponding geometry of samples deformed experimentally. For this application, it predicts the anisotropy and asymmetry of the material flow resulting from crystallographically soft-to-deform extension twinning and basal slip and hard-to-deform contraction twinning and pyramidal slip. The formulation developed is sufficiently general that the T-CPFE model can be applied to other materials that slip and twin. (C) 2016 Published by Elsevier Ltd.
机译:在这项工作中,我们为通过弹性,滑动和变形孪生相结合而变形的多晶金属建立了多级本构模型。它涉及两级均化方案,其中第一级使用上限泰勒型晶体可塑性(T-CP)理论将单晶标度与多晶介观标度相关联,第二级使用隐式有限元( FE)方法将中观尺度与宏观尺度联系起来。后者放宽了泰勒模型施加的等应变约束。因此,我们将模型命名为T-CPFE。在单晶水平上,该模型具有基于位错的硬化定律,可提供控制单晶内滑动活动的激活应力。对于变形孪晶,它包含保留总拉格朗日公式的复合晶粒模型的改进。在这里,我们使用T-CPFE模型来分析挤压应变范围为10(-4)s(-1)至3000 s(-)的AZ31 Mg挤压合金样品在简单压缩,拉伸和扭转下的力学响应和微观结构演变。 1),Kabirian等人报道的温度范围为77 K至423K。 (2015)。以实验测量的初始织构和平均晶粒尺寸作为输入,该模型使用与位错密度的热活化速率定律相关的一组材料参数成功捕获了应力-应变响应,变形织构演变和孪晶体积分数。载荷条件之间流动应力演变的区别是由于滑移和孪生活动的相对量不同而引起的,模型根据响应于施加的载荷条件的滑移和孪生阻力的演化在内部进行了调整。最后,我们证明了压缩期间的几何变化的T-CPFE模型预测与实验变形的样品的对应几何相比具有优势。对于此应用程序,它预测了由于晶体学上的软变形延伸孪晶和基体滑移以及难变形的收缩孪晶和金字塔形滑体所引起的材料流动的各向异性和不对称性。开发的配方具有足够的通用性,可以将T-CPFE模型应用于其他打滑和孪生的材料。 (C)2016由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号