首页> 外文期刊>International Journal of Plasticity >Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory
【24h】

Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory

机译:有限应变下延性断裂的相场建模:变分梯度扩展塑性损伤理论

获取原文
获取原文并翻译 | 示例
       

摘要

This work outlines a rigorous variational-based framework for the phase field modeling of ductile fracture in elastic plastic solids undergoing large strains. The phase field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modeling with geometric features rooted in fracture mechanics. It has proven immensely successful with regard to the analysis of complex crack topologies without the need for fracture-specific computational structure such as finite element design of crack discontinuities or intricate crack-tracking algorithms. Following the recent work Miehe et al. (2015), the phase field model of fracture is linked to a formulation of gradient plasticity at finite strains. The formulation includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. The novel aspect of this work is a precise representation of this framework in a canonical format governed by variational principles. The coupling of gradient plasticity to gradient damage is realized by a constitutive work density function that includes the stored elastic energy and the dissipated work due to plasticity and fracture. The latter represents a coupled resistance to plasticity and damage, depending on the gradient-extended internal variables which enter plastic yield functions and fracture threshold functions. With this viewpoint on the generalized internal variables at hand, the thermodynamic formulation is outlined for gradient extended dissipative solids with generalized internal variables which are passive in nature. It is specified for a conceptual model of von Mises-type elasto-plasticity at finite strains coupled with fracture. The canonical theory proposed is shown to be governed by a rate-type minimization principle, which fully determines the coupled multi-field evolution problem. This is exploited on the numerical side by a fully symmetric monolithic finite element implementation. The performance of the formulation is demonstrated by means of some representative examples. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项工作概述了一个严格的基于变分的框架,用于对承受大应变的弹性塑料固体中的韧性断裂进行相场建模。相场方法通过特定的梯度损伤建模,在纯连续体设置中对尖锐的裂纹表面进行规则化,该模型具有扎根于断裂力学的几何特征。它已被证明在分析复杂的裂纹拓扑方面非常成功,而无需特定于裂纹的计算结构,如裂纹不连续性的有限元设计或复杂的裂纹跟踪算法。继最近的工作Miehe等。 (2015年),裂缝的相场模型与有限应变下的梯度可塑性公式联系在一起。该配方包括两个独立的长度标尺,可同时调整塑性响应和裂纹不连续性。这样可以确保延性断裂的损坏区域在塑性区内,并在计算侧保证后临界范围内的网格客观性。这项工作的新颖之处是以受变分原理支配的规范格式对该框架进行了精确表示。梯度可塑性与梯度损伤的耦合是通过本构功密度函数实现的,该函数包括所存储的弹性能以及由于可塑性和断裂而产生的耗散功。后者代表了对塑性和破坏的耦合抵抗力,具体取决于进入塑性屈服函数和断裂阈值函数的梯度扩展内部变量。鉴于目前对广义内部变量的这种观点,概述了具有广义内部变量的梯度扩展耗散固体的热力学公式,该广义内部变量本质上是被动的。它是为有限应变与断裂耦合下的von Mises型弹塑性概念模型指定的。所提出的规范理论受速率类型最小化原则支配,它充分确定了耦合的多场演化问题。在数字方面,完全对称的整体式有限元实现可以利用这一点。通过一些代表性实例证明了制剂的性能。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号