【24h】

Heuristic approach to the Schwarzschild geometry

机译:Schwarzschild几何的启发式方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this article I present a simple Newtonian heuristic for motivating a weak-field approximation for the spacetime geometry of a point particle. The heuristic is based on Newtonian gravity, the notion of local inertial frames (the Einstein equivalence principle), plus the use of Galilean coordinate transformations to connect the freely falling local inertial frames back to the "fixed stars." Because of the heuristic and quasi-Newtonian manner in which the specific choice of spacetime geometry is motivated, we are at best justified in expecting it to be a weak-field approximation to the true spacetime geometry. However, in the case of a spherically symmetric point mass the result is coincidentally an exact solution of the full vacuum Einstein field equations - it is the Schwarzschild geometry in Painleve-Gullstrand coordinates. This result is much stronger than the well-known result of Michell and Laplace whereby a Newtonian argument correctly estimates the value of the Schwarzschild radius - using the heuristic presented in this article one obtains the entire Schwarzschild geometry. The heuristic also gives sensible results - a Riemann flat geometry - when applied to a constant gravitational field. Furthermore, a subtle extension of the heuristic correctly reproduces the Reissner-Nordstrom geometry and even the de Sitter geometry. Unfortunately the heuristic construction is not truly generic. For instance, it is incapable of generating the Kerr geometry or anti-de Sitter space. Despite this limitation, the heuristic does have useful pedagogical value in that it provides a simple and direct plausibility argument (not a derivation) for the Schwarzschild geometry - suitable for classroom use in situations where the full power and technical machinery of general relativity might be inappropriate. The extended heuristic provides more challenging problems - suitable for use at the graduate level.
机译:在本文中,我提出了一种简单的牛顿启发法,用于激发点粒子的时空几何形状的弱场近似。启发式方法基于牛顿引力,局部惯性系的概念(爱因斯坦当量原理),以及使用伽利略坐标变换将自由落体的局部惯性系与“固定星”连接起来。由于启发式方法和准牛顿式方法激发了时空几何学的特定选择,因此我们有充分理由期望它是对真实时空几何学的弱场近似。但是,在球对称点质量的情况下,结果恰好是全真空爱因斯坦场方程的精确解-它是Painleve-Gullstrand坐标中的Schwarzschild几何形状。这个结果比Michell和Laplace的著名结果要强得多,后者的牛顿论证正确地估计了Schwarzschild半径的值-使用本文介绍的启发式方法,可以获得整个Schwarzschild几何形状。当应用于恒定引力场时,启发式方法也可得出明智的结果-黎曼平面几何。此外,启发式方法的微妙扩展正确地再现了Reissner-Nordstrom几何甚至de Sitter几何。不幸的是,启发式构造并不是真正的通用。例如,它无法生成Kerr几何形状或anti-de Sitter空间。尽管有此限制,启发式方法确实具有有用的教学法价值,因为它为Schwarzschild几何提供了简单直接的合理性论证(而不是推导)-适用于在广义相对论的全部力量和技术手段可能不合适的情况下的课堂使用。扩展的启发式方法提供了更具挑战性的问题-适合在研究生级别使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号