...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Kinetics and mechanism of the oxidation of substituted benzyl alcohols by pyridinium chlorochromate
【24h】

Kinetics and mechanism of the oxidation of substituted benzyl alcohols by pyridinium chlorochromate

机译:氯铬酸吡啶氧化取代苯甲醇的动力学和机理

获取原文
           

摘要

1978 639 Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Pyridinium Chlorochromate By Kalyan K. Banerji, Department of Chemistry, University of Jodhpur, Jodhpur, India The oxidation of benzyl alcohol by pyridinium chlorochromate is first order with respect to both the oxidant and the alcohol. The reaction is catalysed by acid, the catalysed reaction being nearly first order in acidity. The kinetic isotope effect, k,/k,, is 5.07 at 30 "C. The reaction does not induce polymerisation of acrylonitrile. The reaction constant p for the uncatalysed and acid-catalysed oxidation of benzyl alcohol and eight monosubstituted benzyl alcohols have the values -1.70 f0.08 and -1.45 f0.06, respectively at 25 "C. Probable mechanisms are dis-cussed. PYRIDINIUMCHLOROCHROMATE (PCC) is a complex of chromium trioxide, pyridine, and hydrochloric acid and is known as Corey's reagent.1 Corey and Suggsl reported that this complex converts alcohols into carbonyl compounds smoothly at room temperature in yields well over 80.There seems to be no report about the mechanism of this important reaction. The present communication reports the kinetics of oxidation of sub-stituted benzyl alcohols by PCC and evaluates the reac- tion constant. Mechanistic aspects are discussed. RESULTS The oxidation of benzyl alcohol (BA)by PCC in 1 : 1 (v/v) niethylene chloride-nitrobenzene results in the formation of benzaldehyde. No detectable oxidation of benzaldehyde could be observed under the experimental conditions.Stoiclzeio~etry.-Excess of PCC was allowed to react with 0.005h1-benzyl alcohol at various acidities and the excess of CrVl estimated. For some runs, benzaldehyde was estim- ated, using an excess of the alcohol. Values of APCC/ ABA and APCC/ABenzaldehyde in Table 1 suggest the overall reaction (1). 3 PhCH,OH + 2 CrV1--+ 3 PhCHO + 6 H+ + 2 CrIlI (1) TABLE1 Stoicheiometry of the oxidation of benzyl alcohol by PCC TsOH/M APCC/ABA APCC/ABenzaldehyde 0.0 0.62 0.1 0.65 0.3 0.70 0.0 1.20 0.2 1.06 0.4 1.14 Rate Laws.-The rate laws and other experimental data were obtained for all the alcohols investigated. As the results are similar, only those of benzyl alcohol are repro- duced.The reaction is found to be cleanly first order with respect to the oxidant as regards time (as evidenced by constancy of first-order rates at different times) and concentration (as evidenced by the time-order rate coefficient being in-dependent of the initial concentration of the oxidant) (Table 2). The order with respect to the alcohol is also one (Table 3). The reaction is catalysed by acid. The catalysed reaction shows a near first-order depen-dence on acidity, the actual order being 0.87 5 0.02 (Table 4). Because of the non-aqueous nature of the sol- TABLE2 Oxidant depenclence of the reaction rate; BA 0.01h1, t 25 OC 103CrVI/ni 1.0 2.0 3.0 4.0 5.0 106kk,/s-' 7.50 7.50 7.23 7.77 7.61 TABLE3 Dependence of the reaction rate on substrate concentration ; Crvl 0.002MM,t 25 "c 102BA/~ 1.00 2.00 4.00 6.00 8.00 106kJs-1 7.50 15.2 30.6 44.0 60.0 TABLE 4 Dependence of the reaction rate on acidity; BA 0.0131, CrvI 0.0021~1,t 25 "C TsOH/M 0.05 0.10 0.20 0.30 0.40 1O6k1/s-'-11.2 15.8 25.0 32.8 41.0 vents, a constant ionic strength could not be maintained.However, the chromic acid oxidation of benzyl alcohol in aqueous acetic acid is not affected by changes in ionic strength. The rate of oxidation of ma-dideuteriobenzyl alcohol and benzyl alcohol at 30 "C are 103K 4.22 and 21.4 l2 mo1P s-1 respectively. The kinetic isotope effect kH/kD is 5.07 at 30 "C. Effect of Solvent Com$osition.-The acid-catalysed oxid- ation of benzyl alcohol was studied in solutions containing varying proportions of methylene chloride and nitrobenzene (Table 5).The increase in the proportion of nitrobenzene reduces the reaction rate. This accords with Corey's observation that the use of more polar solvents in which the 1 E. J. Corey and W. J. Suggs, Tetrahedron Letters, 1975, 2647. G. V. Bakore, K. K. Banerji, and R. Shanker, 2. Phys.Chem. (Frankfurt), 1965, 45, 129. reactants are soluble lead to inconveniently long reaction times.1 TABLE5 Dependence of the reaction ra,te on solvent composition ; BA 0.02~~ t 25 "CCrVIO.OO~M,TsOH 0.1~~ Nitrobenzene (yo) 20 30 50 60 70 D 14.2 16.8 22.0 24.5 27.1 1O5k,Is-' 8.73 5.37 3.16 2.31 1.88 The oxidation of benzyl alcohol, under nitrogen, failed to induce polymerisation of acrylonitrile.One-electron oxid- ation is thus unlikely, though not ruled out. In control experiments, with the alcohol absent, the concentration of PCC does not show any appreciable change during the period in which it is reduced to one-fifth in the presence of benzyl alcohol. The uncatalysed and acid-catalysed oxidation of mono-substituted benzyl alcohol were studied at different tempera- tures (Tables 6 and 7). The activation parameters (25-40 "C) were evaluated by the standard pr~cedure.~ The error limits in the values of AH*, AS*, and AF* (at 25 "C) are amp;5 kJ mol-l, amp;lo J mol-l K-1, and f7 kJ mol-l, respec- tively (Table 8). TABLE6 Rate constants for oxidation of substituted benzyl alcohols by pyridinium chlorochromate 105k/lmol-l s-l 7 Substituent 25 "C 30 "C 35 "C 40 "C 13 75.0 112 155 216 m-Me 97.7 151 200 277 p-Et 126 186 263 355 @-Me 148 200 274 383 p-OMe 225 302 380 523 p-cr 31.6 47.0 69.0 102 wl3r 15.2 26.3 40.7 70.0 .in-NO, 4.47 8.32 14.1 23.6 P-NO, 3.64 6.62 11.8 20.0 DISCUSSION A near constancy of the free energy of activation shows that the same mechanisni is operative for all the alcohols.J.C.S. Perkin I1 the involvement of a protonated chromium(v1) species in the rate-determining step, in the presence of an acid. Involvement of such species are well established in chromic acid oxidations.* The kinetic isotope effect (kR/kD5.07) indicates that the rate-determining step involves C-H cleavage from the alcohol carbon atom. The activation enthalpies and entropies of both the TABLE7 Rate constants for the oxidation of substituted benzyl alcohol by pyridinium chlorochromate, in the presence of TsOH 104k/12mol-l s-l r Substituent 25 "C 30 "C 35 "C 40 OC' H 158 214 285 386 m-Me 191 257 347 467 9-Et 251 339 447 675 p-Mep-OMe m-Brp-Cl 275 390 75.9 42.7 360 490 112 61.7 468 603 159 100 589 724 245 151 m-NO, P-NO, 15.1 12.5 25.1 22.4 45.7 38.9 79.5 69.2 uncatalysed and acid-catalysed oxidations are linearly related (r 0.990 and 0.987 respectively).The correl- ations were tested and found genuine by applying Exner's ~riterion.~The isokinetic temperature computed from the plots between AH* and AS* are 430 and 375 K respectively. Current views do not attach much physi- cal significance to isokinetic temperature,6 though a linear correlation is usually a necessary condition for the validity of the Hammett equation.Dielectric constants for the methylene chloride-nitrobenzene mixtures are not available but can be estimated approximately from the dielectric constants of the pure solvents.' The estimated dielectric constants for the solvent mixtures are given in Table 5. A plot of log k, against the inverse of dielectric constant gives a TABLE8 Activation parameters for oxidation of substituted benzyl alcohols by pyridinium chlorochromate IJncatalysed oxidation Acid-catalysed oxidation Substituent hH*/kJ mol-1 -AS*/ J mol-1 K-1 AF*/kJ mol-; 'AH*/kJ mol-1 -AS*/J mol-1 K-l AF*/kJ mol-i H 54.7 125 92.0 47.9 123 84.5 .in-RiIe P-Et 56.4 115 54.6 122 89.1 91.0 46.7 125 84.0 45.0 128 83.2 p-Mep-OMep-Clm-Br 51.7 130 43.1 155 59.9 110 78.5 58.5 90.4 91.3 92.8 95.9 44.0 131 83.0 36.4 154 82.3 58.9 84.1 84.0 72.5 52.0 88.0 m-NO, 87.1 39.8 98.9 82.4 27.0 90.4 P-NO, 88.9 35.1 99.3 86.2 15.9 90.9 The free energy of activation of the catalysed oxidation is consistently lower than that of the uncatalysed reaction but are of the same order and indicate that the mechanism of the two reactions are essentially similar.The increase in the oxidation rate with acidity suggests A. A. Frost and R. G. Pearson, ' Kinetics and Mechanism,' Wiley Eastern, New Delhi, 1970, p.99. K. B. Wiberg, ' Oxidation in Organic Chemistry, Part A,' Academic Press, New York, 1965, p. 69. 0. Exner, Coll. Czech. Chem. Comm., 1964, 29, 1094. straight line (Y 0.976) with a positive slope. This suggests an interaction between a positive ion and a dipole and confirms that the rate-determining step, in the presence of an acid, involves a protonated CrVI species. J. E. Leffler, J. Ovg. Chem., 1966, 31, 533. 7 C. N. R. Rao, 'A Handbook of Chemistry and Physics,' Affiliated East-yt Press, New Delhi, 1967, p. 169. E. S. Amis, Solvent Effects on Reaction Rates and Mech- anisms,' Academic Press, New York, 1967, p. 42. 1978 641 The rates of oxidation of substituted benzyl alcohols EXPERIMENTAL CJcorrelate well with Hammett's values, with negative Mateyiamp;.-The preparations and specifiactions of the reaction constants (Table 9).OH I Ph-C-H I H fastPhiHOH -PhCHO H 0 ' Ph-C nn t O=Cr-0" PyH' /bsol; Cl OH alcohols have been described earlier.ll The solvents were slow PhdHOH -k (HO)2 CrCl 0- PyH' (2) 4-H' SCHEME1 SCHEME2 The above results point to a hydride ion transfer in the rate-determining step. The hydride transfer may take place either directly (Scheme 1) or may involve the prior TABLE9 Temperature dependence of the reaction constant for the oxidation of benzyl alcohols by pyridinium chloro-chromate --P t/"C Uncatalysed Acid-catalysed 25 1.70 f0.08 1.45 f0.06 30 1.58 0.10 1.30 amp; 0.04 35 1.48 amp; 0.05 1.16 amp; 0.09 40 1.35 f0.06 1.01 f0.06 purified and dried in the usual manner.12 Toluene-+ sulphonic acid (TsOH) was used as a source of hydrogen ions.All reagents are of analytical grade. Product Analysis.-Benzaldehyde was characterized and estimated as its 2,4-dinitrophenylhydrazone. Kinetic Measurements.-The oxidant was prepared by the method of Corey and Suggs and the purity checked by estimating CrVI iodometrically. The reactions were arranged to be under pseudo-first-order conditions by keeping a large excess ( x 5 or greater) of the alcohol over PCC. The reactions were carried out at con-stant temperature (amp;O. 1 "C) and were followed iodometric-ally. The rate constants were evaluated from the plots of logCoxidant against time.The rate constants reported are the mean of at least duplicate runs and are reproducible to within amp;3. The solvent was always 1 : 1 (v/v) methylene chloride-nitrobenzene, unless mentioned otherwise. The reaction mixtures remain homogeneous in the solvent formation of a chromate ester (Scheme 2). The present data do not enable one to distinguish between the two mechanisms. Chromate ester formation is not likely to systemsbe susceptible to any considerable structural influen~e.~$l~ The large negative reaction constant can thus arise only from the differential effects of the substituents on the rate-determining step. @ N. C. Den0 and M. S. Newman, J. Amer. Chern. Soc., 1950,72, 3852. 10 U. Klanning and M. C. R. Symons, J. Ckem. Soc., 1961, 3204, and references therein. used. The usual initial concentration of the reactants were alcohol 0.01-0.20~~PCC ca. 0.002111, and TsOH 0.05-0.5~. Thanks are due to Dr. R. N. Mehrotra, University of Jodhpur, for helpful discussions. 7/1496 Received, 17th AGgust, 19771 l1 K. K. Banerji, J.C.S. Perkin 11, 1973, 435. l2 D. D. Perrin, W. L. Armarego, and D. R. Perrin, ' Purific-ation of Organic Compounds,' Pergamon Press, Oxford, 1966.
机译:1978 639 氯铬酸吡啶氧化取代苯甲醇的动力学和机理 作者:Kalyan K. Banerji,焦特布尔大学化学系,焦特布尔,印度焦特布尔 氯铬酸吡啶对苯甲醇的氧化是氧化剂和醇的一阶。该反应由酸催化,催化反应在酸度上几乎是一级的。在30“C时,动力学同位素效应k,/k,为5.07。该反应不诱导丙烯腈的聚合反应。苯甲醇和八种单取代苯甲醇的未催化和酸催化氧化反应常数p在25“C时分别为-1.70 f0.08和-1.45 f0.06。氯铬酸吡啶 (PCC) 是三氧化铬、吡啶和盐酸的复合物,被称为 Corey 试剂.1 Corey 和 Suggsl 报告说,这种复合物在室温下可顺利地将醇转化为羰基化合物,收率远高于 80%。似乎没有关于这一重要反应机制的报道。本通讯报告了PCC氧化取代苯甲醇的动力学,并评估了反应常数。讨论了机理方面。结果 PCC在1:1(v/v)二氯硝基苯中氧化苯甲醇(BA)导致苯甲醛的生成。在实验条件下未观察到苯甲醛的可检测到氧化。Stoiclzeio~etry.-允许过量的PCC与0.005h1-苯甲醇在各种酸度下反应,并估计过量的CrVr。对于一些运行,使用过量的酒精来估计苯甲醛。表1中A[PCC]/A[BA]和A[PCC]/A[苯甲醛]的值表明了总体反应(1)。3 PhCH,OH + 2 CrV1--+ 3 PhCHO + 6 H+ + 2 CrIlI (1) 表1 PCC [TsOH]/M A[PCC]/A[BA] A[PCC]/A[苯甲醛] 0.0 0.62 0.1 0.65 0.3 0.70 0.0 1.20 0.2 1.06 0.4 1.14 速率定律-获得所有研究醇的速率定律和其他实验数据。由于结果相似,因此仅复制苯甲醇的结果。在时间(如不同时间的一阶速率恒定性所证明)和浓度(如与氧化剂的初始浓度无关的时间-顺序速率系数所证明)方面,该反应相对于氧化剂而言是干净的一阶反应(表2)。关于酒精的顺序也是一个(表3)。该反应由酸催化。催化反应在酸度上显示出接近一级的递延,实际阶数为0.87 5 0.02(表4)。由于溶胶的非水性-表2氧化剂反应速率的不均匀性;[BA] 0.01h1, t 25 OC 103[CrVI]/ni 1.0 2.0 3.0 4.0 5.0 106kk,/s-' 7.50 7.50 7.23 7.77 7.61 表3 反应速率对底物浓度的依赖性;[Crvl] 0.002MM,t 25“c 102[BA]/~ 1.00 2.00 4.00 6.00 8.00 106kJs-1 7.50 15.2 30.6 44.0 60.0 表4 反应速率对酸度的依赖性;[BA] 0.0131,[CrvI] 0.0021~1,t 25“C [TsOH]/M 0.05 0.10 0.20 0.30 0.40 1O6k1/s-'-11.2 15.8 25.0 32.8 41.0 排气口,无法保持恒定的离子强度。但是,苯甲醇在乙酸水溶液中的铬酸氧化不受离子强度变化的影响。马-二氘苯甲醇和苯甲醇在30“C下的氧化速率分别为103K、4.22和21.4 l2 mo1P s-1。在30“C时,动力学同位素效应kH/kD为5.07。 溶剂组合的影响-在含有不同比例的二氯甲烷和硝基苯的溶液中研究了苯甲醇的酸催化氧化(表5)。硝基苯比例的增加降低了反应速率。这与Corey的观察相吻合,即使用更多的极性溶剂,其中1 E. J. Corey和W. J. Suggs,Tetrahedron Letters,1975,2647。G. V. Bakore、K. K. Banerji 和 R. Shanker,2。Phys.Chem. (法兰克福), 1965, 45, 129.反应物是可溶的,导致反应时间过长.1 表5 反应物对溶剂组合物的依赖性 ;[BA] 0.02~~ t 25 “C[CrVI]O.OO~M,[TsOH] 0.1~~ 硝基苯 (yo) 20 30 50 60 70 D 14.2 16.8 22.0 24.5 27.1 1O5k,Is-' 8.73 5.37 3.16 2.31 1.88 苯甲醇在氮气下的氧化未能诱导丙烯腈的聚合。因此,单电子氧化的可能性不大,但不排除。在对照实验中,在不存在酒精的情况下,PCC的浓度在苯甲醇存在下降低到五分之一期间没有显示出任何明显的变化。研究了单取代苯甲醇在不同温度下的非催化和酸催化氧化(表6和表7)。活化参数(25-40“C)由标准pr~cedure.~AH*、AS*和AF*(在25”C时)的误差限值分别为&5 kJ mol-l、&lo J mol-l K-1和f7 kJ mol-l(表8)。表6 氯铬酸吡啶氧化取代苯甲醇的速率常数 105k/lmol-l s-l 7 取代基 25 “C 30”C 35 “C 40”C 13 75.0 112 155 216 m-me 97.7 151 200 277 p-Et 126 186 263 355 @-me 148 200 274 383 p-OMe 225 302 380 523 p-cr 31.6 47.0 69.0 102 wl3r 15.2 26.3 40.7 70.0 .in-NO, 4.47 8.32 14.1 23.6 P-NO, 3.64 6.62 11.8 20.0 讨论 活化自由能的近乎恒定性表明,相同的机制对所有醇都起作用.J.C.S. Perkin I1 质子化铬 (v1) 物质在酸存在下参与速率决定步骤.这些物质在铬酸氧化中已得到充分证实。 动力学同位素效应(kR/kD5.07)表明速率决定步骤涉及从醇碳原子中裂解C-H。在TsOH存在下,氯铬酸吡啶氧化取代苯甲醇的活化焓和熵的活化焓和熵 104k/12mol-l s-l r 取代基 25 “C 30 ”C 35 “C 40 OC' H 158 214 285 386 m-me 191 257 347 467 9-et 251 339 447 675 p-Mep-OMe m-Brp-Cl 275 390 75.9 42.7 360 490 112 61.7 468 603 159 100 589 724 245 151 m-NO, P-NO, 15.1 12.5 25.1 22.4 45.7 38.9 79.5 69.2 未催化氧化和酸催化氧化呈线性相关(R分别为0.990和0.987)。通过应用Exner的~riterion.~从AH*和AS*之间的图计算出的等速温度分别为430和375 K,测试了相关关系并发现是真实的。目前的观点对等速温度没有太多的物理意义,6尽管线性相关性通常是哈米特方程有效性的必要条件。二氯甲烷-硝基苯混合物的介电常数不可用,但可以从纯溶剂的介电常数中近似估计。溶剂混合物的估计介电常数见表5。与介电常数倒数相反的对数 k 图给出了表 8 氯铬酸吡啶氧化取代苯甲醇的活化参数 I催化氧化 酸催化氧化取代基 hH*/kJ mol-1 -AS*/ J mol-1 K-1 AF*/kJ mol-;'AH*/kJ mol-1 -AS*/J mol-1 K-l AF*/kJ mol-i H 54.'AH*/kJ mol-i H 54.7 125 92.0 47.9 123 84.5 .in-RiIe P-et 56.4 115 54.6 122 89.1 91.0 46.7 125 84.0 45.0 128 83.2 p-mep-OMep-Clm-Br 51.7 130 43.1 155 59.9 110 78.5 58.5 90.4 91.3 92.8 95.9 44.0 131 83.0 36.4 154 82.3 58.9 84.1 84.0 72.5 52.0 88.0 m-NO, 87.1 39.8 98.9 82.4 27.0 90.4 P-NO, 88.9 35.1 99.3 86.2 15.9 90.9 催化氧化活化的自由能始终低于未催化反应的自由能,但数量级相同,表明两种反应的机理基本相似。氧化速率随酸度的增加表明 A. A. Frost 和 R. G. Pearson,“动力学和机制”,Wiley Eastern,新德里,1970 年,第 99 页。K. B. Wiberg,“有机化学中的氧化,A 部分”,学术出版社,纽约,1965 年,第 69 页。0. Exner, Coll. 捷克语。化学通讯, 1964, 29, 1094.直线 (Y 0.976),斜率为正。这表明正离子和偶极子之间存在相互作用,并证实了在酸存在的情况下,速率决定步骤涉及质子化的 CrVI 物质。J.E.莱夫勒,J.奥夫格。化学, 1966, 31, 533.7 C.N.R.Rao,《化学和物理手册》,附属东洋出版社,新德里,1967年,第169页。E. S. Amis,《溶剂对反应速率和机械的影响》,学术出版社,纽约,1967年,第42页。1978 641 取代苯甲醇的氧化速率 实验 CJ与哈米特值密切相关,反应常数的制备和规格为负(表9)。OH I Ph-C-H I H fastPhiHOH -PhCHO H 0 ' Ph-C nn t O=Cr-0“ PyH' /\ Cl OH 醇在前面已经描述过SCHEME1 SCHEME2。氢化物转移可以直接发生(方案1),也可以涉及先前的表9 氯铬酸吡啶氧化苯甲醇的反应常数的温度依赖性 --P t/“C 未催化酸催化 25 1.70 f0.08 1.45 f0.06 30 1.58 0.10 1.30 & 0.04 35 1.48 & 0.05 1.16 & 0.09 40 1.35 f0.06 1.01 f0.06 以通常的方式纯化和干燥.12 甲苯-+磺酸 (TsOH) 用作氢离子的来源。所有试剂均为分析级试剂。产品分析-苯甲醛被表征并估计为2,4-二硝基苯腙。动力学测量-采用Corey和Suggs方法制备氧化剂,并通过碘测估计CrVI来检查纯度。通过在PCC上保持大量过量(x 5或更大)的酒精,将反应安排在伪一级条件下。反应在恒定温度(&O.1“C)下进行,并遵循碘量法。根据logCoxidant]随时间变化的图评估速率常数。报告的速率常数是至少重复运行的平均值,可重现到 &3% 以内。除非另有说明,否则溶剂始终为1:1(v/v)二氯甲烷-硝基苯。反应混合物在铬酸酯的溶剂形成中保持均匀(方案2)。目前的数据无法区分这两种机制。铬酸盐酯的形成不易受到任何相当大的结构影响~e.~$l~ 因此,较大的负反应常数只能由取代基对速率决定步骤的差异效应产生。@ N. C. Den0 和 M. S. Newman, J. Amer. Chern.Soc., 1950,72, 3852.10 U. Klanning 和 M. C. R. Symons, J. Ckem.Soc., 1961, 3204, 以及其中的参考文献。使用。反应物的通常初始浓度为醇0.01-0.20~~PCC约0.002111,TsOH为0.05-0.5~。感谢焦特布尔大学的 R. N. Mehrotra 博士的有益讨论。[7/1496 收稿日期,19771 年 17 月 17 日 l1 K. K. Banerji, J.C.S. Perkin 11, 1973, 435. l2 D. D. Perrin, W. L. Armarego, and D. R.Perrin,“有机化合物的纯化”,Pergamon Press,牛津,1966 年。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号