...
首页> 外文期刊>International Journal of Mechanical Sciences >Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact
【24h】

Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact

机译:液滴对固体表面的影响及其在涡轮叶片上的水滴侵蚀中的应用,第一部分:非线性波动模型和一维冲击的解决方案

获取原文
获取原文并翻译 | 示例

摘要

Water drop erosion is regarded as one of the most serious reliability concerns in the wet steam stage of a steam turbine. The most challenging aspect of this problem involves the fundamental solution of the transient pressure field in the liquid drop and stress field in the metal substrate, which are coupled with each other. We solve the fundamental problem of high-speed liquid-solid impact both analytically and numerically. In Part I of this paper, the governing equations based on a nonlinear wave model for liquid are derived. Analytical and approximate solutions of one-dimensional liquid-solid impact are given for both linear and nonlinear models, which provide critical insights into the water drop erosion problem. Both continuous and pulsant impacts on rigid and elastic substrates are analyzed in detail. During continuous impact, the maximum impact pressure is always higher than the water hammer pressure. Upon pulsant impact and at a particular instant related with the impact duration, the maximum tensile stress appears at a certain depth below the solid surface, which can be readily related with the erosion rate. In Part II of this paper, two-dimensional (axisymmetric) liquid-solid impact is solved numerically, from which the most dangerous impact load/duration time and the most likely crack positions are deduced. Based on our recent solution of the water drop impact statistics (associated with the fluid flow in the blade channel), a comprehensive numerical study of the water drop erosion (fatigue) on a turbine blade is carried out.
机译:水滴侵蚀被认为是蒸汽轮机湿蒸汽阶段最严重的可靠性问题之一。这个问题的最具挑战性的方面涉及基本的解决方案,即液滴中的瞬态压力场和金属基板中的应力场相互耦合。我们从分析和数值两个方面解决了高速液固碰撞的基本问题。在本文的第一部分中,推导了基于非线性波模型的液体控制方程。给出了线性和非线性模型的一维液固碰撞的解析解和近似解,它们提供了对水滴侵蚀问题的重要见解。详细分析了连续和脉冲冲击对刚性和弹性基底的影响。在连续冲击过程中,最大冲击压力始终高于水锤压力。在受到脉冲冲击时,在与冲击持续时间有关的特定瞬间,最大拉应力出现在固体表面以下的某个深度,这很容易与侵蚀速率有关。在本文的第二部分中,数值求解了二维(轴对称)液固冲击,从中推导出了最危险的冲击载荷/持续时间和最可能的裂纹位置。基于我们最近对水滴冲击统计数据(与叶片通道中的流体流量有关)的解决方案,对涡轮叶片上的水滴腐蚀(疲劳)进行了全面的数值研究。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号