...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Kinetic investigation of the reaction between propylene oxide and acetic acid
【24h】

Kinetic investigation of the reaction between propylene oxide and acetic acid

机译:环氧丙烷与乙酸反应动力学研究

获取原文
           

摘要

J. CHEM. SOC. PERKIN TRANS. II 1983 Kinetic Investigation of the Reaction between Propylene Oxide and Acetic Acid Sandor Szakks," Sandor Gobolos, and Ferenc Nagy Central Research Institute for Chemistry, Hungarian Academy of Sciences, 7525 Budapest, P.O. Box 77, Hungarv The rate of the reaction between propylene oxide and acetic acid was found to be first order in propylene oxide concentration, while the partial reaction order for acetic acid varied with the composition of the reaction mixture between 2.0 and 2.6. Different alkali-metal acetate catalysts were investigated as well as the temperature dependence of the ' non-catalysed ' and ' catalysed ' reactions. Our results suggest that protonated propylene oxide formed in the pre-equilibrium and the hydrogen- bonded acetic acid-propylene oxide complex react with acetate ion or with acetic acid.The reaction between propylene oxide and acetic acid, which produces propylene glycol monoacetate by nucleophilic addition, is partly understood as so far only a few authors have dealt with the elucidation of its kinetics and mechan- ism.1-3 Several basic questions remained unanswered, e.g. the relation between the change in composition of the mixture and the values of partial kinetic orders, the mechanism of the reaction, and the nature of the reaction catalysed by alkali- metal acetates. The investigation of the reaction between propylene oxide and acetic acid enables the ring-opening addition reactions between carboxylic acids and oxirans to be and gives information on important industrial reactions, such as the 'one-step ' production of propylene glycol monoacetate from propylene and acetic acid by catalytic acetoxy1ation.'- lo Results (1) Kinetic Investigation of the Reaction between Propylene Oxide and Acetic Acid.-The reaction is apparently first order in propylene oxide as found similarly by Isaacs and S~hmitt.'-~ For an acetic acid : propylene oxide molar ratio no of 7 even at high conversion (i.e.80) no great deviations were found in the kinetic curve, but in mixtures of high propylene oxide concentration (i.e.no1) and high conversions the curve showed deviation from that for first-order kinetics. The value of the rate constant (kl) changed with the composition of the mixture. From this fact it may be concluded that the reaction is not of first, but of a higher order with more complicated molecularity (see Figure 1).Thus, the rate of the reaction cannot be described by equation (1) which contains whole number exponents of the concentrations (see Table). The rate constants obtained from the graphs and the initial rate obtained from kl determined over small concentration ranges (r" = klCBo) show good agreement in Figure 1 (therefore for simplicity the reaction rate was determined by the use of kl values). A more general equation describing the rate of the propylene oxide-acetic acid reaction for a solvent-free medium was sought after. For such an equation an exact knowledge of the kinetic partial order of the reactants is required.Since it was expected that associated states would play an important role in the reaction, we tried to choose a solvent which behaves like an inert diluting material. Benzene, chlorobenzene, carbon tetrachloride, and other solvents with small dielectric con- stants and low affinity to hydrogen bond interaction influence the acetic acid dimer-monomer equilibrium the least.11-18 C:/mol dma3 8 10 12 14 16 18 ljft 1 I I I I 1 I I I I I 1-80 -607 VI -m 'EU-40 a E -2 -20 -0 Figure1. Dependence of the reaction rate and kl on the composition of the mixture at 50 "C: 0,calculated from k,;0, obtained bydifferentiation of the plot Figure 2 shows that the value of 01 changed with the mixture composition; at higher acetic acid concentrations 01 is 2.6, while at no 1 it is 2.0.In the experimental range it was inde- pendent of temperature. For the propylene oxide partial order determination changes in mixture composition (i.e. the chlorobenzene : propylene oxide ratio) affected the reaction only to a small degree. This is verified by the propylene oxide partial order (j3 1.0) measured in chlorobenzene solution (see Figure 3). Tetrahydrofuran, which has electron-donating character, interacts with acetic acid and so cannot be considered as inert as chlorobenzene as the value of 0.9 shows. The Table shows that the overall rate constants calculated at different mixture compositions based on 01 2.6 and j3 1.0 do not depend on the mixture composition. The solvent-free propylene oxide-acetic acid reaction may well be described by the partial orders obtained from the reaction in chloro-benzene (i.e.chlorobenzene solvent does not cause strong solven t-reactant interact ions), We suggest equation (2) for the initial rate of the propylene oxide-acetic acid reaction. (2) Investigation of'the Reaction bet ween Propylene Oxide and Acetic Acid in the Presence of Alkali-metal Acetates.--In agreement with published data,I6 it was found that alkali- 418 J. CHEM. SOC. PERKIN TRANS. iI 1983 Determination of partial kinetic reaction orders of the acetic acid-propylene oxide reaction at 50 "Cby the differential method Rate constants kAcetic acid-propylene oxide Initial rate * c 106 re" 106 reo -A-106 reoconcentrat ion I--h -I 106reo/ C*"CBU c,ycB")2 (CA")*CR"Cno/mol dm ' C,"/mol dm mol dm s-' (dm3 mol-' s ') (dm6 in01 s I) (dm6 mol * s-')Experiment 1 2 3 4 5 6 7 lo6reo (CA")' CRo (dm7.Rm~-*.~s ) 0.0339 0.0267 0.0262 0.0237 0.0251 0.0260 I I 1 7.68 10.32 12.52 14.30 14.36 14.91 7.43 50.5 5.30 61.2 3.53 66.0 2.10 50.3 2.06 52.8 1.61 47.0 75.2 OC I I I I 1.0 0.885 0.119 0.115 1.119 0.21 I 0.108 1.493 0.423 0.119 1.675 0.798 0.117 1.785 0.866 0.124 1.987 1.234 0.131 I I I I I 0 0.5 Lg C;/rnol drn-3 * Extrapolated to time 0.1 I I I 0.5 Figure 3. Determination of the reaction order for propylene oxide at 74.8 "C: 0,with chlorobenzene; V,with tetrahydrofuran; CAo10.0 mol dm-3 (see Figure 6).From the temperature dependence of the reaction rate for 'non-catalytic ' processes the following activation energy value (at no7) was obtained: E, 79.5 i3.9 W mol-', in good agreement with the literature value 77.4 3 3.8 kJ mol-'. The linear slopes in Figure 6 are characteristic of the temperature dependence of the 'catalytic ' process. The activation energy calculated from the Arrhenius plot is in good agreement with that of the 'non-catalytic ' process. Discussion The reaction of acetic acid with propylene oxide is a complex process of consecutive reaction steps, consisting of two bi-moJecular main steps. At first the oxiran (B:) becomes activated (protonated) by a solvated or a free proton (A,H) or by acetic acid (A,H) producing a hydrogen bond reaction (3).Then the complex formed gives the product on reaction with a nucleophile (Nul = acetic acid, Nu2 = acetate anion) by a slower, rate-determining step (4). Kiis the pre-equili brium lg ~Jrnolh-3 Figure 2. Determination of the reaction order for acetic acid at 60 and 75.2 "C, using chlorobenzene as solvent: Can2.0 mol dm-3 metal acetates increase the rate of the reaction. The conversion of propylene oxide can be described by a first-order rate equation to a good approximation. Figure 4 shows the depen- dence of the initial rates on catalyst concentration. It can be seen that after an initial period the rate increases linearly with increasing catalyst concentration, and the reaction rate is also affected by the quality of alkali-metal acetate.Similar behaviour may be observed in the case of a molar ratio noof I. At higher catalyst concentrations, however, there is a devi- ation from linearity. Presumably there is a decrease in the electrolytic dissociation of the catalyst in the case of NO 1 (see Figure 5). The dependence of the initial rate of the addition reaction catalysed by potassium acetate on the concentration of the catalyst and on the reaction temperature has been examined J. CHEM. SOC. PERKIN TRANS. 11 1983 75 "c,001 r 0 0.1 0.2 0.3 0.4 0.5 C,/mol dm" Figure 4. Effect of the amount of alkali-metal acetate catalyst on the rate of the propylene oxide-acetic acid reaction at SO "Cand tt'' 7 r KOAc 0 0.1 0.2 0.3 04 0.5 C,/mol dm-3 Figure 5.Effect of the amount of alkali-metal acetate catalyst on the rate of the propylene oxide-acetic acid reaction at 50 "C and ti1 I '1.JAIH:B + NU, 4BHNu~+ A, (4) constant of the protonation and ki,, the rate constant of the partial process (4). In the case of low conversion and at no B 2 the glycol monoacetate product (as Nu3) can be neglected because of its small concentration and slight n~cleophility,~' and the overall reaction rate (r) can be given by equation (5). The concen- trations of the reactants (AiH) and (Nu,) in equation (5) are simultaneously influenced by several factors. The acid in acetic acid-solvent systems is present as monomer, dimer, and oligomer forms."-15 The ratio of these forms depends on the solvent and on the concentration of the acid which is also influenced by the electrolytic dissociation process.The re- action rate depends on the concentration of acetic acid in a complicated manner, for the composition of the mixture influences the pre-equilibrium; with an increase in the di- electric constant of the mixture the stability of the AIH:B transition complex It is not surprising that the 1 I 1 I I I 0 0.1 0.2 0.3 0.4 0.5 C,/mol dm-3 Figure 6. Dependence of the rate of the propylene oxide-acetic acid reaction catalysed by potassium acetate on the amount of catalyst at different temperatures and no 7 overall experimental partial reaction order (a)is a fraction, which makes possible the simultaneous occurrence of a number of steps.Because of the complicated nature of the reaction, the validation of equation (5) requires further study. Experimental Kinetic investigations were carried out by dilatometry. Conversion values (X)were determined from the volume contraction values (AT/)by relationship (6) where mRois the initial weight of propylene oxide in the dilatometer. For the calculation of the dilatometric constant (DT),the densities in equations (7)--(9) were used 2o where dA, dB, and dc are the dA,T = 1.0721-0.001 12T, 15 "cd T 115 "c (7) de,T = 0.8552-0.001 32T, 0"C T G 90 "C (8) amp;,T = 1.0679-0.001 OT,40 "C d T 90 "C (9) densities of acetic acid, propylene oxide, and glycol mono- acetate, respectively.Equations (8) and (9) were determined by a dilatometer of calibrated volume. The temperature dependence of DTis given by equation (10). The value of DT DT 4.365 -0.03 (10) was also determined experimentally in the case of 100 conversion. At lower temperatures (50-60 "C) and with high no values the experimentally determined and calculated DTvalues were equal to within 1; at higher temperatures (80 "C or above) however, experimental values ca. 10 higher than those calculated were obtained. In g.1.c. analysis, propy- lene glycol diacetate and oxypropylated products of high mole- cular weight were found. In the formation of these substances, the role of transacylation processes 22 cannot be excluded. Materials were Fluka puriss grade.Propylene glycol mono- acetate was prepared in an autoclave." References 1 N. S. Isaacs, Tetrahedron Lett., 1965, 4549. 2 N. S. Isaacs and K. Neelakantan, Can. J. Chern., 1968, 46, 1043. 3 W. Schmitt, 2.Phys. Chem. (Frankfurt),1968, 59, 217. 4 N. N. Lebedev and K. A. Guskov, Kinet. Katal., (a) 1963, 4, 116; (b) 1964, 5, 787; (c) 1964, 5, 446. 5 R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 59, 737. 6 Y. Tanaka and H. Takeuchi, Tetrahedron, 1968, 24, 6433. 7 G. Lamaty, R. Maloq, C. Selve, A. Sivade, and J. Wylde, J. Chem. SOC.,Perkin Trans. 2, 1975, 11 19. 8 J. Biggs, N. B. Chapman, A. F. Finch, and V. Wrsy, J. Cizcw. SOC.B, 1971, 55. 9 W. F. Gresham, U.S.P. 2 497 408/1950 (Chem.Ahstr., 1950, 44, 5381h). 10 W. Gaenzler, K. Kabs, and G. Schroeder, Ger. P., 2 256 84711974 (Chem. Abstr., 1974, 81, 49 277g). 11 C. P. Brown and A. R. Mathieson, J. Phys. Chem., 1954, 58, 1057. 12 D. P. N. Satchel1 and J. L. Wardell, Trans. Furaday Soc., 1965, 63, 1199. 13 Yu. Ya. Fialkov, G. A. Puchkovskaya, and V. V. Vashchinskaya, Zh. Obshch. Khim., 1973, 482. J. CHEM. SOC. PERKIN TRANS. I1 1983 14 M. A. Goldman and M. T. Emerson, J. Phys. Chem., 1973, 77, 2295. 15 M. N. Carevskaya and N. A. Carevskii, Zh. Fiz. Khim., 1980, 54, 642, 646. 16 Dow Chemicals Co., F.P. 1 556 336/1969 (Chern. Abstr., 1969, 71, 49 313j). I7 K. A. Guskov and N. N. Lebedev, Tr. Mosk. Khim. Teknnol. Inst., 1963, 42, 65 (Clzem. Abstr., 1965, 62,10 306g). 18 T. Iijima and H. Kakiuchi, Tetrahedron, 1979, 35, 299. 19 H. Kakiuchi and T. Iijima, Tetrahedron Lett., 1980, 21, 1011. 20 * Ullmanns Encyclopadie der technischen Chemie,rsquo; Aufl. 4, Band 11, p. 58. 21 S. Szakacs, T. Foldes-Berezsnich, F. Tudos, and L. Jokay, Eur. Polym. J., 1979, 15, 295. 22 M. B. Hocking, Can. J. Chern., 1974, 52, 2730. Received 2nd March 1981 ;Paper 11353
机译:J. CHEM. SOC. PERKIN TRANS. II 1983 环氧丙烷和乙酸之间反应的动力学研究 Sandor Szakks,“ Sandor Gobolos, and Ferenc Nagy 匈牙利科学院中央化学研究所, 7525 Budapest, P.O. Box 77, Hungarv 环氧丙烷和乙酸之间的反应速率被发现在环氧丙烷浓度上是一阶的, 而乙酸的部分反应顺序随反应混合物的组成而变化,在2.0和2.6之间。研究了不同的碱金属醋酸酯催化剂以及“非催化”和“催化”反应的温度依赖性。我们的结果表明,在预平衡中形成的质子化环氧丙烷和氢键的乙酸-环氧丙烷络合物与乙酸或乙酸反应。环氧丙烷和乙酸之间的反应,通过亲核加成产生丙二醇一乙酸酯,部分理解为迄今为止只有少数作者处理了其动力学和机理的阐明.1-3 几个基本问题仍未得到解答,例如混合物组成的变化与部分动力学阶数值之间的关系, 反应机理,以及碱金属乙酸盐催化的反应性质。对环氧丙烷和乙酸之间反应的研究使羧酸和环氧羔体之间的开环加成反应成为可能,并提供了有关重要工业反应的信息,例如通过催化乙酰氧基从丙烯和乙酸中“一步”生产丙二醇单乙酸酯。 结果 (1) 环氧丙烷和乙酸之间反应的动力学研究.-该反应显然是环氧丙烷中的一级反应Isaacs 和 S~hmitt.'-~ 对于乙酸:环氧丙烷摩尔比 7 即使在高转化率(即 80%)下,动力学曲线也没有发现很大的偏差,但在高环氧丙烷浓度(即 NO1)和高转化率的混合物中,曲线显示出与一级动力学的偏差。速率常数(kl)的值随混合物的组成而变化。从这一事实可以得出结论,该反应不是第一反应,而是具有更复杂分子的高级反应(见图1)。因此,反应速率不能用包含浓度的整数指数的公式(1)来描述(见表)。从图中获得的速率常数和从小浓度范围内确定的kl获得的初始速率(r“ = klCBo)在图1中显示出良好的一致性(因此,为简单起见,反应速率通过使用kl值确定)。人们寻求一种更通用的方程来描述无溶剂介质中环氧丙烷-乙酸反应的速率。对于这样的方程式,需要对反应物的动力学部分顺序有确切的了解。由于预计伴生态将在反应中发挥重要作用,因此我们尝试选择一种表现类似于惰性稀释材料的溶剂。苯、氯苯、四氯化碳等介电常数小、氢键相互作用亲和力低的溶剂对乙酸二聚体-单体平衡的影响最小.11-18 C:/mol dma3 8 10 12 14 16 18 ljft 1 I I I I I 1 I I 1-80 -607 VI -m 'EU-40 a E -2 -20% -0 图1.反应速率和kl对混合物成分的依赖性在50“C:0,由k,计算;0、通过图2的微分图得到,01的值随混合物组成而变化;在较高的乙酸浓度下,01为2.6,而在1号时,它 2.0.In 实验范围,它与温度无关。对于环氧丙烷,混合物成分的偏序测定变化(即氯苯:环氧丙烷的比例)仅对反应产生很小的影响。在氯苯溶液中测得的环氧丙烷偏阶(j3 1.0)证实了这一点(见图3)。四氢呋喃具有供电子特性,与乙酸相互作用,因此不能像 0.9 的值所示的氯苯那样被认为是惰性的。该表显示,基于01 2.6和j3 1.0在不同混合物成分下计算的总速率常数不依赖于混合物成分。无溶剂环氧丙烷-乙酸反应可以很好地描述为从氯苯(即氯苯溶剂不会引起强溶剂t反应物相互作用离子)中获得的部分有序性,我们建议用公式(2)表示环氧丙烷-乙酸反应的初始速率。(2)研究'环氧丙烷和乙酸在碱金属乙酸盐存在下的反应--与已发表的数据一致,I6 发现碱- 418 J. CHEM. SOC. PERKIN TRANS. iI 1983 Determination of partial kinetic reaction of the partial kinetic reaction of the acetic acid-propylene oxide reaction at 50 “Cby the differential method rate constants kAcetic acid-propylene oxide Initial rate * c 106 re” 106 reo -A-106 reoconcentrat ion I--h -I 106reo/ C*“CBU c,ycB“)2 (CA”)*CR“Cno/mol dm ' C,”/mol dm mol dm s-' (dm3 mol-' s ') (dm6 in01 s I) (dm6 mol * s-')实验 1 2 3 4 5 6 7 lo6reo (CA“)' CRo (dm7.Rm~]-*.~s ]) 0.0339 0.0267 0.0262 0.0237 0.0251 0.0260 I I 1 7.68 10.32 12.52 14.30 14.36 14.91 7.43 50.5 5.30 61.2 3.53 66.0 2.10 50.3 2.06 52.8 1.61 47.0 75.2 OC I I I I 1.0 0.885 0.119 0.115 1.119 0.21 I 0.108 1.493 0.423 0.119 1.675 0.798 0.117 1.785 0.866 0.124 1.987 1.234 0.131 I I I I I 0 0.5 Lg C;/rnol drn-3 * 外推时间 0.1 I I I 0.5 图 3.测定环氧丙烷在74.8“C:0,与氯苯的反应顺序;V,与四氢呋喃同;CAo10.0mol dm-3(见图6)。根据“非催化”过程反应速率的温度依赖性,获得了以下活化能值(在no7处):E,79.5 i3.9 W mol-',与文献值77.4 3 3.8 kJ mol-'非常吻合。图6中的线性斜率是“催化”过程与温度依赖性的特征。从阿伦尼乌斯图计算出的活化能与“非催化”过程的活化能非常吻合。讨论 乙酸与环氧丙烷的反应是一个连续反应步骤的复杂过程,由两个双moJecular主要步骤组成。首先,环氧乙烷 (B:) 被溶剂化或游离质子 (A,H) 或乙酸 (A,H) 活化(质子化),产生氢键 [反应 (3)]。然后,形成的络合物通过较慢的速率决定步骤与亲核试剂(Nul = 乙酸,Nu2 = 乙酸阴离子)反应得到产物 (4)。Kiis 预平衡 brium lg ~Jrnolh-3 图 2.测定乙酸在60和75.2“C下的反应顺序,使用氯苯作为溶剂:Can2.0 mol dm-3金属醋酸盐提高反应速率。环氧丙烷的转化可以用一阶速率方程来描述,以达到良好的近似值。图4显示了初始速率对催化剂浓度的影响。可以看出,在初始阶段后,速率随催化剂浓度的增加呈线性增加,反应速率也受到碱金属醋酸酯质量的影响。在摩尔比 noof I 的情况下可以观察到类似的行为。然而,在较高的催化剂浓度下,线性度存在偏差。据推测,在NO 1的情况下,催化剂的电解解离会减少(见图5)。研究了醋酸钾催化的加成反应的初始速率对催化剂浓度和反应温度的依赖性 J. CHEM. SOC. PERKIN TRANS. 11, 1983, 75 “c,001 r 0 0.1 0.2 0.3 0.4 0.5 C,/mol dm” 图 4.碱金属醋酸酯催化剂用量对环氧丙烷-乙酸反应速率的影响 SO “Cand tt'' 7 r KOAc 0 0.1 0.2 0.3 04 0.5 C,/mol dm-3 图5.碱金属醋酸催化剂用量对环氧丙烷-乙酸反应速率在50”C和ti1 I '1.JAIH的影响:B+NU,4BHNu~+A,(4)质子化常数和ki,,部分过程的速率常数(4)。在转化率低且无B 2的情况下,乙二醇单乙酸产物(如Nu3)可以忽略不计,因为它的浓度小,有轻微的n~亲核性,~',总反应速率(r)可以由式(5)给出。方程(5)中反应物(AiH)和(Nu,)的浓度同时受到几个因素的影响。醋酸溶剂体系中的酸以单体、二聚体和低聚物的形式存在。-15 这些形式的比例取决于溶剂和酸的浓度,酸的浓度也受到电解解离过程的影响。反应速率以复杂的方式取决于乙酸的浓度,因为混合物的成分会影响预平衡;随着混合物介电常数的增加,AIH:B过渡配合物的稳定性 1 I 1 I I I 0 0.1 0.2 0.3 0.4 0.5 C,/mol dm-3 也就不足为奇了 图6.醋酸钾催化的环氧丙烷-乙酸反应速率对催化剂用量的依赖性与7总体实验部分反应顺序(a)是分数,这使得同时发生许多步骤成为可能。由于反应的复杂性,方程(5)的验证需要进一步研究。通过膨胀法进行实验动力学研究。转换值 (X) 由关系 (6) 根据体积收缩值 (AT/) 确定,其中 mRois 膨胀计中环氧丙烷的初始重量。对于膨胀常数(DT)的计算,方程(7)--(9)中的密度为2o,其中dA、dB和dc分别为dA,T = 1.0721-0.001 12T,15“cd T < 115”c (7) de,T = 0.8552-0.001 32T,0“C < T G 90”C (8) &,T = 1.0679-0.001 OT,40“C d T < 90”C (9) 醋酸、环氧丙烷和乙二醇一乙酸酯的密度。方程式(8)和(9)由校准体积膨胀计确定。DT的温度依赖性由公式(10)给出。在100%转化率的情况下,DT DT 4.365 -0.03(10)的值也是通过实验确定的。在较低温度(50-60“C)和高无值下,实验确定和计算的DT值等于1%以内;然而,在较高的温度(80°C或以上)下,获得的实验值比计算值高出约10%。在 g.1.c.分析发现丙二醇二乙酸酯和高分子量的氧丙基化产物。在这些物质的形成中,不能排除转酰化过程22的作用。材料是 Fluka puriss 级。在高压釜中制备丙二醇单乙酸酯。参考文献 1 N. S. Isaacs, Tetrahedron Lett., 1965, 4549.2 N. S. Isaacs 和 K. Neelakantan, Can. J. Chern., 1968, 46, 1043.3 W. Schmitt, 2.Phys. Chem.(法兰克福),1968, 59, 217.4 N.N.列别杰夫和K.A.古斯科夫,基内特。Katal., (a) 1963, 4, 116;(b) 1964年,5,787;(c) 1964年,第5页,第446页。5 R. E. Parker 和 N. S. Isaacs,Chem. Rev.,1959,59,737。6 Y. Tanaka 和 H. Takeuchi,四面体,1968 年,24,6433。7 G. Lamaty, R. Maloq, C. Selve, A. Sivade, and J. Wylde, J. Chem. SOC.,Perkin Trans. 2, 1975, 11 19.8 J.比格斯、NB查普曼、AF芬奇和V.Wrsy、J.Cizcw。SOC。B,1971 年,第 55 页。9 W. F. Gresham, U.S.P. 2 497 408/1950 (Chem.Ahstr., 1950, 44, 5381h)。10 W. Gaenzler, K. Kabs, and G. Schroeder, Ger. P., 2 256 84711974 (Chem. Abstr., 1974, 81, 49 277g)。11 C. P. Brown 和 A. R. Mathieson, J. Phys. Chem., 1954, 58, 1057.12 D. P. N. Satchel1 and J. L. Wardell, Trans. Furaday Soc., 1965, 63, 1199.13 于.你。Fialkov, G. A. Puchkovskaya, 和 V. V. Vashchinskaya, Zh. Obshch.Khim.,1973 年,第 482 页。J. CHEM. SOC. PERKIN TRANS. I1 1983 14 M. A. Goldman and M. T. Emerson, J. Phys. Chem., 1973, 77, 2295.15 M.N.卡列夫斯卡娅和N.A.卡列夫斯基,Zh.菲兹。Khim., 1980, 54, 642, 646.16 陶氏化学公司,F.P. 1 556 336/1969 (Chern. Abstr., 1969, 71, 49 313j)。I7 K. A. Guskov 和 N. N. Lebedev, Tr. Mosk.希姆。泰克诺尔。Inst., 1963, 42, 65 (Clzem. Abstr., 1965, 62,10 306g).18 T. Iijima 和 H. Kakiuchi,四面体,1979 年,35,299。19 H. Kakiuchi 和 T. Iijima,Tetrahedron Lett.,1980,21,1011。20 * Ullmanns Encyclopadie der technischen Chemie,' Aufl.4,第 11 段,第 58 页。21 S. Szakacs, T. Foldes-Berezsnich, F. Tudos, and L. Jokay, Eur. Polym.J., 1979, 15, 295.22 M. B. Hocking, Can. J. Chern., 1974, 52, 2730.收稿日期: 1981年3月2日 ;P aper 11353

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号