...
首页> 外文期刊>International Journal of Multiphase Flow >A multi-phase theory for the detonation of granular explosives containing an arbitrary number of solid components
【24h】

A multi-phase theory for the detonation of granular explosives containing an arbitrary number of solid components

机译:包含任意数量固体成分的粒状炸药爆炸的多相理论

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multiphase continuum models are commonly used to predict the shock, combustion and detonation behavior of granular energetic mixtures containing solid reactants and gaseous products. These models often include phase interaction terms that formally satisfy the strong form of the Second Law of Thermodynamics and provide flexibility in distributing dissipation between phases arising from non-equilibrium phenomena. This work presents a thermodynamically compatible constitutive theory for reactive systems containing an arbitrary number of solid components. The theory represents a rigorous extension of the two-phase theory formulated by Bdzil et al., based on the well-studied Baer-Nunziato model. Forms of the gas-solid and solid-solid interphase sources suggested by general reactions of type A -> B are considered, where the combustion processes discussed in Bdzil et al. are treated as a special case. The model energetics are augmented by supplemental evolutionary equations that track local changes in phase temperatures due to dissipative and transport processes allowing for the identification of dominant energetic processes. This capability provides a mean to identify system parameters (e.g., metal particle size and mass fraction in metalized energetic mixtures) which optimize performance metrics. Detonation predictions are given for mixtures of granular HMX and aluminum to demonstrate model features and to highlight the effect of aluminum particle self-heating by oxidation on detonation. Predicted spatial profiles for mechanical fields, and the heating contributions from individual dissipative processes, illustrate how aluminum particle size can affect the coupling of oxidative heating to the explosive reaction zone. (C) 2015 Elsevier Ltd. All rights reserved.
机译:多相连续体模型通常用于预测包含固体反应物和气态产物的颗粒状高能混合物的冲击,燃烧和爆轰行为。这些模型通常包含相相互作用项,这些相相互作用项正式满足热力学第二定律的强形式,并在分配由非平衡现象引起的相之间的耗散时具有灵活性。这项工作提出了一种热力学兼容的本构理论,用于包含任意数量固体成分的反应体系。该理论代表了Bdzil等人基于充分研究的Baer-Nunziato模型建立的两阶段理论的严格扩展。考虑了A→B型一般反应所建议的气固相和固相间相源的形式,其中Bdzil等人讨论了燃烧过程。被视为特例。通过补充演化方程来补充模型能量,该方程跟踪由于耗散和传输过程而引起的相温度局部变化,从而可以确定主要的能量过程。此功能提供了一种手段,可以识别可优化性能指标的系统参数(例如,金属颗粒尺寸和金属化高能混合物中的质量分数)。给出了颗粒状HMX和铝的混合物的爆轰预测,以证明模型特征并突出氧化引起的铝粒子自热对爆轰的影响。预测的机械场空间分布以及各个耗散过程的热量贡献说明了铝颗粒尺寸如何影响氧化性加热与爆炸反应区的耦合。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号