首页> 外文期刊>International journal of mass spectrometry >Implementation of Guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology
【24h】

Implementation of Guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology

机译:对多收集器TIMS铀同位素比计量的测量不确定度(GUM)表达指南的实施

获取原文
获取原文并翻译 | 示例
           

摘要

The application of the GUM (Guide to the expression of Uncertainty in Measurement) to calculate standard uncertainties for routine uranium isotope mass spectrometry measurements for nuclear safeguards and nuclear metrology is introduced. The benefit of this approach is an improved coherency and transparency of the uncertainty calculation, which should include contributions from all potentially significant sources of uncertainty to the mass spectrometric measurement result. The GUM approach puts the responsibility for quantifying the uncertainty on the analyst who makes the measurements and not with the user of the data. The uncertainty budget also serves to provide a feedback to the analyst. It identifies the dominant components of the measurement uncertainty and allows for better understanding, management, and improvement of the measurement process. Detailed examples of uncertainty calculations are presented for the most common types of uranium isotope measurements by multi-collector thermal ionization mass spectrometry (TIMS), e.g., total evaporation, conventional Faraday cup measurements using internal normalization, and combined measurements using a secondary electron multiplier and Faraday cups. Various sources of uncertainty common to multi-collector TIMS, such as baseline noise, peak-tailing effects, peak flatness, detector inter-calibration, and detector linearity response are discussed with respect to the determination of their uncertainty contribution and their influence on the results. Different approaches are explained with their advantages and disadvantages.
机译:介绍了GUM(测量不确定度表示指南)在计算用于核保障和核计量的常规铀同位素质谱法测量的标准不确定性中的应用。这种方法的好处是提高了不确定性计算的一致性和透明度,其中应包括所有潜在的不确定性来源对质谱测量结果的贡献。 GUM方法将量化不确定性的责任交给了进行测量的分析人员,而不是数据用户。不确定性预算还可以为分析人员提供反馈。它确定了测量不确定度的主要组成部分,并可以更好地理解,管理和改进测量过程。通过多收集器热电离质谱(TIMS)给出了最常见类型的铀同位素测量不确定性计算的详细示例,例如总蒸发,使用内部归一化的常规法拉第杯测量以及使用二次电子倍增器和法拉第杯。讨论了多采集器TIMS常见的各种不确定性来源,例如基线噪声,峰尾效应,峰平坦度,检测器互校准和检​​测器线性响应,以确定它们的不确定性贡献及其对结果的影响。 。解释了不同的方法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号