...
【24h】

Rounding and stability in centreless grinding

机译:无心磨削的圆度和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The paper presents a method for selecting grinding conditions and assists researchers to understand the complex dynamics of centreless grinding. It overcomes the problem of deriving dynamic stability charts for particular geometries and difficulty of interpreting such charts to adjust work speed to overcome lobing problems. Classic dynamic stability charts cannot assess stability levels in proximity to integer lobes, a particular problem for centreless grinding. The paper overcomes these problems employing a simply calculated new dynamic stability parameter A_(dyn). The new parameter A_(dyn) simplifies the optimisation of grinding variables including set-up geometry and work speed in relation to resonant frequency. It is difficult to interpret relative dynamic stability of centreless grinding by classical methods for different set-ups, work speeds and numbers of lobes. A new method is employed in this paper based on the well-established Nyquist stability criterion. The dynamic stability parameter A_(dyn) is based on the real part of the characteristic equation. It is easily computed and presented on a single chart for particular work speed, resonant frequency and for a wide range of numbers of lobes. The method clearly shows the effect on rounding strength both for stable and unstable conditions. Most authors computing dynamic stability charts have ignored positive down boundaries and negative up boundaries showing a lack of a comprehensive treatment for a situation that conflicts with recommendations for conventional positive up boundaries. The new method simplifies this problem. Small differences in set-up geometry and work speed selection can be easily assessed. The new method can be used as a diagnostic tool for adjusting grinding conditions to overcome roundness problems. The user is not constrained by a historic set-up range since there are practical situations where other set-ups are preferred such as small tangent angles for large and heavy work-pieces, and even negative tangent angle for some types of centreless machine. Previous research is reviewed to provide an understanding of the need for a new approach to stability. Practical implications are explained for selection of grinding conditions. The method is supported by reference to experimental results.
机译:本文介绍了一种选择磨削条件的方法,可帮助研究人员了解无心磨削的复杂动力学。它克服了为特定几何图形导出动态稳定性图表的问题,也克服了解释此类图表以调整工作速度以克服凸角问题的困难。经典的动态稳定性图表无法评估接近整数凸角的稳定性水平,这是无心磨削的一个特殊问题。本文通过简单计算的新动态稳定性参数A_(dyn)克服了这些问题。新的参数A_(dyn)简化了磨削变量的优化,包括与共振频率相关的设置几何形状和工作速度。对于不同的设置,工作速度和凸角数量,很难通过经典方法来解释无心磨削的相对动态稳定性。基于已建立的奈奎斯特稳定性准则,本文采用了一种新方法。动态稳定性参数A_(dyn)基于特征方程的实部。对于特定的工作速度,共振频率以及大范围的波瓣,可以轻松地将其计算并显示在一张图表上。该方法清楚地显示了在稳定和不稳定条件下对舍入强度的影响。大多数计算动态稳定性图表的作者都忽略了正的向下边界和负的向上边界,这表明缺乏对与常规正向上边界的建议相冲突的情况的综合处理。新方法简化了此问题。可以轻松评估设置几何形状和工作速度选择上的细微差异。该新方法可用作调整磨削条件以克服圆度问题的诊断工具。使用者不受历史设置范围的限制,因为在实际情况下,其他设置是首选的,例如大型和重型工件的切线角度小,某些无心机床的切线角度为负。回顾了以前的研究,以了解对新的稳定性方法的需求。解释了选择研磨条件的实际含义。该方法通过参考实验结果得到支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号