首页> 外文期刊>International Journal of Machine Tools & Manufacture: Design, research and application >Chatter modelling in micro-milling by considering process nonlinearities
【24h】

Chatter modelling in micro-milling by considering process nonlinearities

机译:考虑工艺非线性的微铣削颤振建模

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a new approach for chatter modelling in micro-milling. The model takes into account: the nonlinearity of the uncut chip thickness including the run-out effect; velocity dependent micro-milling cutting forces; the dynamics of the tool-holder-spindle assembly. The uncut chip thickness is determined after considering the full kinematics of the cutting tool including the run-out effect. The micro-milling cutting forces are determined by: (i) a finite element (FE) prediction of the cutting forces in orthogonal cutting at different cutting velocities and uncut chip thicknesses; (ii) describing the relationship between cutting forces, cutting velocities and uncut chip thicknesses into a nonlinear equation; (iii) incorporating the uncut chip thickness model into the relationship of the cutting forces as function of the cutting velocity and the uncut chip thickness. The modal dynamic parameters at the cutting tool tip are determined for the tool-holder-spindle assembly and used for solving the equation of motion. The micro-milling process is modelled as two degrees of freedom system where the modal dynamic parameters for the tool-holder-spindle assembly and the micro-milling cutting forces are considered. Due to nonlinearities in the micro-milling cutting forces, the equation of motion is integrated numerically in the time domain using the Runge-Kutta fourth order method. The displacements in the x and y directions are obtained for one revolution-per-tool. Statistical variances are then employed as a chatter detection criterion in the time-domain solution. Scanning electron microscope (SEM) inspection is carried out to observe potential chatter marks on the micro-milled AISI 4340 steel surfaces at different spindle speeds and depths of cut. The predicted stability lobes and the experimentally obtained stability limits resulted in satisfactory agreement. The influence of the run-out effect on the stability lobes at different feed rates was investigated, which demonstrated the capability of the developed chatter model to consider quantitatively the run-out phenomenon. The results showed that the stability limits decrease by increasing the run-out length.
机译:本文提出了一种新的微铣削颤振建模方法。该模型考虑了:未切屑厚度的非线性,包括跳动效应;取决于速度的微铣削切削力;刀架-主轴组件的动力学特性。未切削切屑的厚度是在考虑了刀具的全部运动特性(包括跳动效应)之后确定的。微观铣削切削力由以下因素决定:(i)在不同切削速度和未切削切屑厚度下正交切削中切削力的有限元(FE)预测; (ii)将切削力,切削速度和未切削切屑厚度之间的关系描述为一个非线性方程; (iii)将未切屑厚度模型结合到切削力与切削速度和未切屑厚度的函数关系中。确定切削刀具尖端的模态动态参数,以用于刀架-主轴组件,并将其用于求解运动方程。将微铣削过程建模为两个自由度系统,其中考虑了刀柄-主轴组件的模态动态参数和微铣削切削力。由于微铣削切削力中的非线性,使用Runge-Kutta四阶方法在时域中对运动方程进行了数值积分。每把工具旋转一圈,即可获得x和y方向的位移。然后,将统计方差用作时域解中的颤动检测准则。进行扫描电子显微镜(SEM)检查,以观察在不同的主轴速度和切削深度下,微铣削的AISI 4340钢表面上可能存在的颤动痕迹。预测的稳定性叶和实验获得的稳定性极限导致令人满意的一致性。研究了跳动效应对不同进给速率下稳定叶的影响,证明了所开发的颤振模型能够定量考虑跳动现象。结果表明,稳定性极限随着跳动长度的增加而减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号