首页> 外文期刊>International Journal of Astrobiology >An active nitrogen cycle on Mars sufficient to support a subsurface biosphere
【24h】

An active nitrogen cycle on Mars sufficient to support a subsurface biosphere

机译:火星上活跃的氮循环足以支撑地下生物圈

获取原文
获取原文并翻译 | 示例
           

摘要

Mars' total atmospheric nitrogen content is 0.2 mbar. One-dimensional (1D) photochemical simulations of Mars' atmosphere show that nitric acid (HNO _3(g)), the most soluble nitrogen oxide, is the principal reservoir species for nitrogen in its lower atmosphere, which amounts to a steady-state value of 6× 10 ~(-2) kg or 4 moles, conditions of severe nitrogen deficiency. Mars could, however, support-10 ~(15) kg of biomass (-1 kg N m ~(-2)) from its current atmospheric nitrogen inventory. The terrestrial mass ratio of nitrogen in biomass to that in the atmosphere is-10 ~(-5); applying this ratio to Mars yields-10 ~(10) kg of total biomass-also, conditions of severe nitrogen deficiency. These amounts, however, are lower limits as the maximum surface-sink of atmospheric nitrogen is 2.8 mbar (9× 10 ~(15) kg of N), which indicates, in contradistinction to the Klingler et al. (1989), that biological metabolism would not be inhibited in the subsurface of Mars. Within this context, we explore HNO _3 deposition on Mars' surface (i.e. soil and ice-covered regions) on pure water metastable thin liquid films. We show for the first time that the negative change in Gibbs free energy increases with decreasing HNO _3(g) (NO _3 ~-(aq)) in metastable thin liquid films that may exist on Mars' surface. We also show that additional reaction pathways are exergonic and may proceed spontaneously, thus providing an ample source of energy for nitrogen fixation on Mars. Lastly, we explore the dissociation of HNO _3(g) to form NO _3 ~-(aq) in metastable thin liquid films on the Martian surface via condensed phase simulations. These simulations show that photochemically produced fixed nitrogen species are not only released from the Martian surface to the gas-phase, but more importantly, transported to lower depths from the Martian surface in transient thin liquid films. A putative biotic layer at 10 m depth would produce HNO _3 and N _2 sinks of-54 and-5× 10 ~(12) molecules cm ~(-2) s ~(-1), respectively, which is an ample supply of available nitrogen that can be efficiently transported to the subsurface. The downward transport as well as the release to the atmosphere of photochemically produced fixed nitrogen species (e.g. NO _2 ~-, NO and NO _2) suggests the existence of a transient but active nitrogen cycle on Mars.
机译:火星的总大气氮含量为0.2毫巴。火星大气的一维(1D)光化学模拟表明,硝酸(HNO _3(g))是最易溶解的氮氧化物,是其低层大气中氮的主要储集层,其值等于稳态值6×10〜(-2)kg或4摩尔,严重缺氮的条件。但是,火星可以从其当前的大气氮存量中支持10〜(15)kg生物量(-1 kg N m〜(-2))。生物质中氮与大气中氮的地球质量比为-10〜(-5);将这个比例应用于火星,会产生10〜(10)kg的总生物量,以及严重的氮缺乏状况。然而,这些量是较低的限值,因为大气中氮的最大表面吸收为2.8毫巴(9×10〜(15)千克N),这与Klingler等人的观点相反。 (1989),生物代谢不会在火星的地下被抑制。在此背景下,我们研究了HNO _3在纯水亚稳态薄液膜上在火星表面(即土壤和冰覆盖的区域)的沉积。我们首次证明,在可能存在于火星表面的亚稳态薄膜中,吉布斯自由能的负变化随着HNO _3(g)(NO _3〜-(aq))的降低而增加。我们还表明,其他反应途径是能动的,可能自发进行,从而为固定在火星上的氮提供了充足的能量来源。最后,我们通过凝聚相模拟研究了在火星表面亚稳态薄液膜中HNO _3(g)的离解形成NO _3〜-(aq)。这些模拟表明,光化学产生的固定氮物种不仅从火星表面释放到气相,而且更重要的是,在瞬态液体薄膜中从火星表面传输到较低的深度。假定的生物层深度为10 m,将分别产生-54和-5×10〜(12)分子cm〜(-2)s〜(-1)的HNO _3和N _2汇,这是一个充足的可以有效地输送到地下的可用氮。光化学产生的固定氮物种(例如NO _2〜-,NO和NO _2)的向下迁移以及向大气的释放表明火星上存在一个短暂但活跃的氮循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号