...
首页> 外文期刊>International Journal of Greenhouse Gas Control >Geochemical evaluation of CO2 injection and containment in a depleted gas field
【24h】

Geochemical evaluation of CO2 injection and containment in a depleted gas field

机译:贫气田二氧化碳注入和围堵的地球化学评价

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The short-and long-term geochemical impact of CO2 injection into a depleted gas reservoir (OCR) is investigated using reservoir/geochemical modeling with TOUGH(2)/TOUGHREACT and 1D kinetic diffusion modeling with PHREEQC (caprock/well-cement). Simulations of CO2 injection into the reservoir predict displacement and buoyancy of post-production CH4, as well as dry-out of the near-well zone. We computed that the areal extent of the CH4/brine dominated zone and the dry-out zone are relatively small compared to the CO2/brine dominated zone after well-closure. For the current DGR model we therefore conclude that it is reasonable to model geochemical reactions in the reservoir without taking into account post-production CH4. Although the CO2 dissolution capacity of the studied DGR is smaller compared to a deep saline aquifer of similar size, the modeling predicts that dissolution and subsequent CO2 mineral trapping proceed faster. Precipitation of dawsonite and magnesite were yet predicted at initial CO2 partial pressure (P-CO2) of 9.3 bar, while these minerals were not identified in reservoir samples. This could indicate that their tendency of precipitation is overestimated by the model and hence the database used. This has significant impact on long-term modeled bulk porosity and P-CO2. Simulations of CO2 diffusion through the caprock show that mineral reactions significantly retard the total dissolved carbon (TDC) plume. After 10,000 years, 99% of the TDC is present within the first 6.4m above the reservoir contact. The progression of the TDC plume in the caprock is sensitive to the composition, kinetic rates, and surface area of primary and secondary minerals. Cement alteration modeling shows progressive carbonation of cement phases, resulting in three zones of distinct mineralogy and porosity. The three zones are predominantly characterized by: (i) unaltered cement, (ii) portlandite dissolution, and (iii) calcite precipitation. The simulated thickness of the affected zone is 3.8 cm after 100 years. This distance is sensitive to kinetic rate constants of C-S-H phases, but less sensitive to kinetic rate constant of portlandite. In summary, our applied methodology provides quantitative predictions of the geochemical impact of CO2 on the DGR storage complex. The methodology can be used for screening of potential DGR storage locations and to define criteria for minimal caprock and cement sheet thickness, for assuring short-and long-term integrity of the storage location. (C) 2014 Elsevier Ltd. All rights reserved.
机译:使用TOUGH(2)/ TOUGHREACT的储层/地球化学模型和PHREEQC(盖层/井水泥)的一维动力学扩散模型,研究了向贫气气藏(OCR)注入CO2的短期和长期地球化学影响。注入储层的CO2模拟可预测生产后CH4的位移和浮力,以及近井区的变干。我们计算得出,封闭后,CH4 /盐水为主的区域和干燥区的面积比CO2 /盐水为主的区域要小。因此,对于当前的DGR模型,我们得出结论,在不考虑后期CH4的情况下对储层中的地球化学反应进行建模是合理的。尽管所研究的DGR的CO2溶解能力比类似大小的深层盐水含水层小,但该模型预测溶解和随后的CO2矿物捕集速度更快。在9.3 bar的初始CO2分压(P-CO2)下,片钠铝石和菱镁矿的沉淀尚未得到预测,而在储层样品中未发现这些矿物。这可能表明该模型及其所使用的数据库高估了它们的降水趋势。这对长期模拟的整体孔隙率和P-CO2具有重大影响。二氧化碳在盖层中扩散的模拟表明,矿物反应显着阻碍了总溶解碳(TDC)羽流。 10,000年后,TDC的99%位于储层接触上方的前6.4m之内。 TDC羽流在盖层中的发展对主要和次要矿物的组成,动力学速率以及表面积很敏感。水泥蚀变模型显示水泥相逐渐碳化,形成三个具有明显矿物学和孔隙度的区域。这三个区域的主要特征是:(i)未改变的水泥,(ii)硅酸盐溶解和(iii)方解石沉淀。 100年后,受影响区域的模拟厚度为3.8 cm。该距离对C-S-H相的动力学速率常数敏感,但是对硅酸盐的动力学速率常数较不敏感。总而言之,我们的应用方法论提供了二氧化碳对DGR储存复合物的地球化学影响的定量预测。该方法可用于筛选潜在的DGR储存地点,并定义最小盖层和水泥板厚度的标准,以确保储存地点的短期和长期完整性。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号