首页> 外文期刊>International Journal of Greenhouse Gas Control >Modeling the CO2-based enhanced geothermal system (EGS) paired with integrated gasification combined cycle (IGCC) for symbiotic integration of carbon dioxide sequestration with geothermal heat utilization
【24h】

Modeling the CO2-based enhanced geothermal system (EGS) paired with integrated gasification combined cycle (IGCC) for symbiotic integration of carbon dioxide sequestration with geothermal heat utilization

机译:对基于CO2的增强型地热系统(EGS)与集成气化联合循环(IGCC)进行建模,以实现二氧化碳封存与地热利用的共生整合

获取原文
获取原文并翻译 | 示例
           

摘要

The global warming potential of carbon dioxide (CO2) emphasizes more the sequestration of CO2 otherwise emitted from coal-fired power plants in the future. This study is focused on pairing a coal-fired integrated gasification combined cycle (IGCC) plant with enhanced geothermal system (EGS) for simultaneous sequestration of CO2 and extraction of geothermal heat energy for subsequent electricity generation by an organic Rankine cycle (ORC) in enhanced geothermal systems (EGS). By assuming the reservoir characteristics for two different geothermal source temperatures 200 degrees C and 300 degrees C, heat transfer calculations show that larger reservoir volume (>1 km(3)) is necessary for the sustained extraction of geothermal heat energy over a period of 25 years. The temperature and pressure profiles of CO2 in the injection well and the production well, the corresponding power output from the ORC for five different working fluids, are simulated by ASPEN Plus Version 7.3. The reservoir conditions and the type of working fluid selected determine the power output in the ORC. The temperature and the pressure of the CO2 at the outlet of the production well are greater than that at the injection well due to the heating of CO2 in the reservoir during the extraction of geothermal heat energy. Therefore, a combination of a high pressure turbine and an organic Rankine cycle is beneficial for the conversion of geothermal energy from CO2 into electricity before its recirculation into the injection well. Among the secondary working fluids used in the modeling of the ORC, the time-averaged net EGS power is highest for isobutane and lowest for isopentane over a period of 25 years. When isobutane is used as a secondary working fluid, the time-averaged power output over a period of 25 years for two geothermal reservoirs at an initial geothermal source temperature of 300 degrees C and 200 degrees C are 46 MWe and 21 MWe, respectively. When neopentane is used as a secondary working fluid, the time-averaged power output for a period of 25 years is 37 MWe for an initial geothermal source temperature of 300 degrees C and 17 MWe for an initial geothermal source temperature of 200 degrees C. Pairing IGCC with EGS can considerably recover some of the energy lost during the sequestration of CO2 (50 MWe) from a 629 MWe IGCC plant. (C) 2014 Elsevier Ltd. All rights reserved.
机译:二氧化碳(CO2)的全球变暖潜力更加强调了未来从燃煤电厂排放的CO2的隔离。这项研究的重点是将燃煤综合气化联合循环(IGCC)厂与增强型地热系统(EGS)配对,以同时封存CO2和提取地热能,以通过增强型有机朗肯循环(ORC)进行后续发电地热系统(EGS)。通过假设两个不同地热源温度分别为200摄氏度和300摄氏度的储层特征,传热计算表明,在25年的时间内持续提取地热能,需要更大的储层体积(> 1 km(3))。年份。 ASPEN Plus 7.3版模拟了注入井和生产井中CO2的温度和压力曲线,以及来自ORC的五种不同工作流体的相应功率输出。储层条件和所选工作流体的类型决定了ORC中的功率输出。由于提取地热能期间储层中的二氧化碳加热,生产井出口处的二氧化碳温度和压力大于注入井中的温度和压力。因此,高压涡轮机和有机朗肯循环的组合有利于将地热能从CO2转化为电能,然后再循环回注入井。在ORC建模中使用的辅助工作流体中,时间平均净EGS功率在25年内对异丁烷最高,对异戊烷最低。当使用异丁烷作为辅助工作流体时,两个地热储层在初始地热源温度分别为300摄氏度和200摄氏度下,在25年的时间平均功率输出分别为46 MWe和21 MWe。当使用新戊烷作为辅助工作流体时,初始地热源温度为300摄氏度,25年时间平均功率输出为37 MWe,初始地热源温度为200摄氏度为17 MWe。具有EGS的IGCC可以从629 MWe IGCC装置中封存二氧化碳(50 MWe)过程中损失的一些能量得以恢复。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号