首页> 外文期刊>International Journal of Fracture >Why do cracks branch? A peridynamic investigation of dynamic brittle fracture
【24h】

Why do cracks branch? A peridynamic investigation of dynamic brittle fracture

机译:为什么裂缝会分支?动态脆性断裂的围动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we review the peridynamic model for brittle fracture and use it to investigate crack branching in brittle homogeneous and isotropic materials. The peridynamic simulations offer a possible explanation for the generation of dynamic instabilities in dynamic brittle crack growth and crack branching. We focus on two systems, glass and homalite, often used in crack branching experiments. After a brief review of theoretical and computational models on crack branching, we discuss the peridynamic model for dynamic fracture in linear elastic-brittle materials. Three loading types are used to investigate the role of stress waves interactions on crack propagation and branching. We analyze the influence of sample geometry on branching. Simulation results are compared with experimental ones in terms of crack patterns, propagation speed at branching and branching angles. The peridynamic results indicate that as stress intensity around the crack tip increases, stress waves pile-up against the material directly in front of the crack tip that moves against the advancing crack; this process "deflects" the strain energy away from the symmetry line and into the crack surfaces creating damage away from the crack line. This damage "migration", seen as roughness on the crack surface in experiments, modifies, in turn, the strain energy landscape around the crack tip and leads to preferential crack growth directions that branch from the original crack line. We argue that nonlocality of damage growth is one key feature in modeling of the crack branching phenomenon in brittle fracture. The results show that, at least to first order, no ingredients beyond linear elasticity and a capable damage model are necessary to explain/predict crack branching in brittle homogeneous and isotropic materials.
机译:在本文中,我们回顾了脆性断裂的动力学模型,并将其用于研究脆性均质和各向同性材料中的裂纹分支。围动态模拟为动态脆性裂纹扩展和裂纹分支中动态不稳定性的产生提供了可能的解释。我们专注于经常在裂纹分支实验中使用的两种系统,玻璃和钙铁矿。在简要回顾了裂纹分支的理论和计算模型之后,我们讨论了线性弹性脆性材料中动态断裂的蠕变动力学模型。三种载荷类型用于研究应力波相互作用对裂纹扩展和分支的作用。我们分析了样品几何形状对分支的影响。将模拟结果与实验结果进行了比较,包括裂纹模式,分支处的传播速度和分支角度。周边动力学结果表明,随着裂纹尖端周围的应力强度的增加,应力波直接在裂纹尖端前面的材料上堆积,而该尖端材料则与前进的裂纹相对运动。此过程将应变能“偏离”对称线,并进入裂纹表面,从而造成远离裂纹线的损坏。这种损伤“迁移”在实验中被视为裂纹表面的粗糙度,进而改变了裂纹尖端周围的应变能态势,并导致了优先的裂纹扩展方向,该方向从原始裂纹线分支。我们认为,损伤增长的非局部性是脆性断裂裂纹分支现象建模的关键特征之一。结果表明,至少对于一阶而言,解释/预测脆性均质和各向同性材料中的裂纹分支至少不需要线性弹性和有效的损伤模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号