首页> 外文期刊>International journal of engine research >Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation
【24h】

Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation

机译:怠速期间通过气缸停用和灵活的气门致动为压燃式发动机提供省油的排气热管理

获取原文
获取原文并翻译 | 示例
           

摘要

Fuel efficient thermal management of diesel engine aftertreatment is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. Aftertreatment systems incorporating NOx-mitigating selective catalytic reduction and diesel oxidation catalysts must reach similar to 250 degrees C to be effective. The primary engine-out condition that affects the ability to keep the aftertreatment components hot is the turbine outlet temperature; however, it is a combination of exhaust flow rate and turbine outlet temperature that impact the warm-up of the aftertreatment components via convective heat transfer. This article demonstrates that cylinder deactivation improves exhaust thermal management during both loaded and lightly loaded idle conditions. Coupling cylinder deactivation with flexible valve motions results in additional benefits during lightly loaded idle operation. Specifically, this article illustrates that at loaded idle, valve motion and fuel injection deactivation in three of the six cylinders enables the following: (1) a turbine outlet temperature increases from; similar to 190 degrees C to 310 degrees C with only a 2% fuel economy penalty compared to the most efficient six-cylinder operation and (2) a 39% reduction in fuel consumption compared to six-cylinder operation achieving the same; similar to 310 degrees C turbine out temperature. Similarly, at lightly loaded idle, the combination of valve motion and fuel injection deactivation in three of the six cylinders, intake/exhaust valve throttling, and intake valve closure modulation enables the following: (1) a turbine outlet temperature increases from; similar to 120 degrees C to 200 degrees C with no fuel consumption penalty compared to the most efficient six-cylinder operation and (2) turbine outlet temperatures in excess of 250 degrees C when internal exhaust gas recirculation is also implemented. These variable valve actuation-based strategies also outperform six-cylinder operation for aftertreatment warm-up at all catalyst bed temperatures. These benefits are primarily realized by reducing the air flow through the engine, directly resulting in higher exhaust temperatures and lower pumping penalties compared to conventional six-cylinder operation. The elevated exhaust temperatures offset exhaust flow reductions, increasing exhaust gas-to-catalyst heat transfer rates, resulting in superior aftertreatment thermal management performance.
机译:柴油发动机后处理的燃料高效热管理是一项重大挑战,特别是在冷启动,长时间怠速行驶,城市驾驶以及在寒冷环境下的车辆操作过程中。结合了缓解NOx的选择性催化还原和柴油氧化催化剂的后处理系统必须达到250摄氏度左右才能有效。影响后处理组件保持高温能力的主要发动机熄火条件是涡轮机出口温度。然而,排气流量和涡轮出口温度的组合会通过对流换热影响后处理组件的预热。本文证明,在空载和轻载怠速工况下,气缸停用均可改善排气热管理。在轻载空转操作过程中,气缸联动停用和灵活的阀门运动会带来额外的好处。具体来说,本文说明了在空转时,六个气缸中的三个气缸的气门运动和燃油喷射停用可以实现以下功能:(1)涡轮出口温度从升高;类似于190摄氏度至310摄氏度,与最高效的六缸运行相比,燃油经济性损失仅为2%;(2)与达到相同效率的六缸运行相比,燃油消耗降低了39%;类似于310摄氏度的涡轮出口温度。同样,在轻载怠速情况下,六个气缸中的三个气缸中的气门运动和燃油喷射停用,进气/排气门节流和进气门关闭调节的组合实现了以下目的:(1)涡轮出口温度从类似于120摄氏度至200摄氏度,与最高效的六缸运行相比没有油耗损失,并且(2)当还实现内部废气再循环时,涡轮出口温度超过250摄氏度。这些基于可变气门致动的策略在所有催化剂床温下的后处理预热方面也优于六缸操作。这些优点主要是通过减少流过发动机的空气流量来实现的,与传统的六缸运行相比,直接导致更高的排气温度和更低的泵送罚款。较高的排气温度抵消了排气流量的减少,提高了排气至催化剂的传热速率,从而带来了出色的后处理热管理性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号