...
首页> 外文期刊>International journal of computational methods >Crashworthiness design for honeycomb structures under axial dynamic loading
【24h】

Crashworthiness design for honeycomb structures under axial dynamic loading

机译:轴向动力载荷作用下蜂窝结构的耐撞性设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

For a honeycomb structure used for absorbing crash energy and protecting the safety of human or instruments, the bigger the specific energy absorption (SEA) is, the more popular it would be when the peak crushing stress (σ_p) was retained small enough. In order to improve the energy absorption capacity, crashworthiness optimization for honeycomb structures with various cell specifications are studied in this paper. Detailed numerical models are established for those honeycomb structures by using an explicit finite element method code LS-DYNA. The numerical simulation results are then used as the design samples for constructing metamodels. The optimal Latin hypercube design (OLHD) method is employed for the selection of sampling design points in the design space, and the polynomial functions, radial basis functions (RBF), Kriging, multivariate adaptive regression splines (MARS), and support vector regression (SVR) are utilized to formulate the two optimal objectives SEA and σ_p. It is found that the polynomial function is the most efficient in constructing the crashworthiness metamodels of honeycombs among the above-mentioned methods. Then, the polynomial function models of SEA and σ_p are chosen as the surrogate models in the crashworthiness optimization. In order to further validate the polynomial function models, the polynomial function models of SEA and σ_p are compared with the analytical solutions based on Wierzbicki's theory and Kunimoto and Yamada's theory, respectively. An excellent correlation has been established. As such, the multi-objective particle swarm optimization algorithm (MOPSOA) is applied to obtain the Pareto front of SEA with σ_p of the honeycomb structures with various cell specifications, which has resulted in a range of optimal designs of honeycomb structures by the multi-objective optimization.
机译:对于用于吸收碰撞能量并保护人体或仪器安全的蜂窝结构,比能量吸收(SEA)越大,将峰值破碎应力(σ_p)保持足够小时,它将越受欢迎。为了提高能量吸收能力,本文研究了具有不同单元格规格的蜂窝结构的耐撞性优化。通过使用显式有限元方法代码LS-DYNA,为这些蜂窝结构建立了详细的数值模型。然后将数值模拟结果用作构建元模型的设计样本。最佳拉丁超立方体设计(OLHD)方法用于设计空间中的采样设计点的选择,以及多项式函数,径向基函数(RBF),Kriging,多元自适应回归样条(MARS)和支持向量回归( SVR)用于制定两个最佳目标SEA和σ_p。发现在上述方法中,多项式函数对于构建蜂窝的耐撞性元模型最有效。然后,选择SEA和σ_p的多项式函数模型作为耐撞性优化中的替代模型。为了进一步验证多项式函数模型,将SEA和σ_p的多项式函数模型分别与基于Wierzbicki理论和Kunimoto和Yamada理论的解析解进行了比较。建立了极好的相关性。因此,应用多目标粒子群优化算法(MOPSOA)来获得具有各种单元格规格的蜂窝结构的σ_p的SEA的Pareto前沿,从而通过多种方法对蜂窝结构进行了一系列优化设计目标优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号