...
首页> 外文期刊>Analytical chemistry >ANALYTICAL CHALLENGES in MOLECULAR ELECTRONICS
【24h】

ANALYTICAL CHALLENGES in MOLECULAR ELECTRONICS

机译:分子电子学的分析挑战

获取原文
获取原文并翻译 | 示例
           

摘要

In the late 1990s, molecular electronics emerged rapidly and spectacularly as an area of research that encompasses several paradigms in which electrons are transported through molecules (1, 2). An often-stated motivation for pursuing these devices is to extend Moore's law of the exponential growth in microelectronic device density. The state of the art in silicon technology is a minimum feature size of 65 nm. If the trend toward miniaturization continues, eventually devices will have to be fabricated on the molecular scale of a few nanometers. This article will address the promise of molecular electronic devices and some of the problems with characterizing electronic components with molecular dimensions. An early and widely publicized molecular electronic component was a bistable rotaxane molecule with 2 configurations that, in principle, could act as a single-molecule, 1-bit memory cell (3, 4). The molecule was switched between two metastable configurations by an applied electrical pulse. If such a device could be mass-produced in microelectronic circuits, it would represent an increase in device density of 2-3 orders of magnitude. In addition to the fabrication challenges associated with the further extension of Moore's law, the physical properties of silicon become a limitation as feature size decreases. For example, insufficient tunneling barriers and capacitance associated with very thin silicon oxide films (<10 nm) can significantly degrade device performance.
机译:在 1990 年代后期,分子电子学迅速而壮观地成为一个研究领域,其中包含电子通过分子传输的几种范式 (1, 2)。追求这些器件的一个经常被提及的动机是扩展微电子器件密度指数增长的摩尔定律。硅技术的最新技术是最小特征尺寸为 65 nm。如果小型化的趋势继续下去,最终将不得不在几纳米的分子尺度上制造设备。本文将讨论分子电子器件的前景以及用分子尺寸表征电子元件的一些问题。早期广为人知的分子电子元件是具有 2 种构型的双稳态轮烷分子,原则上可以充当单分子 1 位存储单元 (3, 4)。分子通过施加的电脉冲在两种亚稳态构型之间切换。如果这种器件可以在微电子电路中大规模生产,那么器件密度将增加2-3个数量级。除了与摩尔定律进一步扩展相关的制造挑战外,随着特征尺寸的减小,硅的物理特性也成为限制。例如,与非常薄的氧化硅薄膜 (<10 nm) 相关的隧穿势垒和电容不足会显著降低器件性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号