首页> 外文期刊>International Journal for Numerical Methods in Engineering >Controlling the onset of numerical fracture in parallelized implementations of the material point method (MPM) with convective particle domain interpolation (CPDI) domain scaling
【24h】

Controlling the onset of numerical fracture in parallelized implementations of the material point method (MPM) with convective particle domain interpolation (CPDI) domain scaling

机译:通过对流粒子域插值(CPDI)域缩放控制材料点方法(MPM)的并行实现中控制数值断裂的开始

获取原文
获取原文并翻译 | 示例
           

摘要

The material point method is well suited for large-deformation problems in solid mechanics but requires modification to avoid cell-crossing errors as well as extension instabilities that lead to numerical (nonphysical) fracture. A promising solution is convected particle domain interpolation (CPDI), in which the integration domain used to map data between particles and the background grid deforms with the particle, based on the material deformation gradient. While eliminating the extension instability can be a benefit, it is often desirable to allow material separation to avoid nonphysical stretching. Additionally, large stretches in material points can complicate parallel implementation of CPDI if a single particle domain spans multiple computational patches. A straightforward modification to the CPDI algorithm allows a user-specified scaling of the particle integration domain to control the numerical fracture response, which facilitates parallelization. Combined with particle splitting, the method can accommodate materials with arbitrarily large failure strains. Used with a smeared damage/softening model, this approach will prevent nonphysical numerical fracture in situations where the material should remain intact, but the effect of a single velocity field on localization may still produce errors in the post-failure response. Details are given for both 2-D and 3-D implementations of the scaling algorithm. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:质点法非常适合于固体力学中的大变形问题,但是需要进行修改以避免单元交叉错误以及导致数值(非物理)断裂的延伸不稳定性。对流粒子域插值(CPDI)是一种很有前途的解决方案,其中用于在粒子和背景网格之间映射数据的积分域会根据材质变形梯度随粒子变形。尽管消除延伸不稳定性可能是有益的,但通常希望允许材料分离以避免非物理拉伸。此外,如果单个粒子域跨越多个计算补丁,则实质性点的较大拉伸会使CPDI的并行实现复杂化。对CPDI算法的直接修改允许用户指定粒子积分域的缩放比例,以控制数值断裂响应,从而有助于并行化。结合粒子分裂,该方法可以适应具有任意大破坏应变的材料。与涂污损坏/软化模型一起使用时,该方法将防止在材料应保持完好无损的情况下进行非物理数值断裂,但是单个速度场对局部化的影响仍可能在失效后响应中产生误差。给出了缩放算法的2-D和3-D实现的详细信息。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号