首页> 外文期刊>International Biodeterioration & Biodegradation >Comparison of in-situ biodegrading abilities of Pseudomonas putida mutants: leuB[super]- auxotroph, fliC[super]- non-motility, and cheA[super]- non-chemotaxis
【24h】

Comparison of in-situ biodegrading abilities of Pseudomonas putida mutants: leuB[super]- auxotroph, fliC[super]- non-motility, and cheA[super]- non-chemotaxis

机译:恶臭假单胞菌突变体就地生物降解能力的比较:leuB [-]营养缺陷型,fliC [-]非运动性和cheA [s]-非趋化性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Bioremediation of pollutants in natural environments is affected by many factors, such as bacterial survival, motility, and chemotaxis. However, these roles in in-situ biodegradation of organophosphorus pesticides have not been examined extensively. In this paper, a highly effective methyl-parathion (MP) degrading strain, Pseudomonas putida DLL-1, which also demonstrates motile ability and chemotactic response toward MP, was selected as the research material. A leuB[super]- auxotroph mutant A3-27 and fliC[super]- non-motility mutant a4-8 were first constructed by random insertion of the kanamycin gene into the chromosome of P. putida DLL-1 with the mini-transposon system. Biodegradation of MP in liquid medium and soil microcosms by A3-27, a4-8 and a previously constructed cheA[super]- non-chemotaxis mutant P. putida DAK were compared. The kinetic parameters for MP degradation were all similar in the well-mixed liquid systems. However, in soil microcosms, all the three mutants had lower degrading rates compared with wild-type P. putida DLL-1. The auxotroph mutant A3-27 had the lowest degrading rate and could only degrade 25.7-34.2% MP in 5 days, and the non-motility mutant a4-8 and non-chemotaxis mutant DAK could only degrade 53.5-68.1% and 64.3-85.7% MP, respectively. This paper emphasizes, for the first time, the use of non-auxotroph bacteria for efficient removal of organophosphorus pesticides in contaminated sites, and also points out the importance of select microorganisms with specific motile or chemotactic affinities in optimizing pesticide bioremediation.
机译:自然环境中污染物的生物修复受到许多因素的影响,例如细菌存活率,运动性和趋化性。然而,这些作用在有机磷农药原位生物降解中的作用尚未得到广泛研究。本文选择了高效降解甲基对硫磷(MP)的菌株假单胞菌假单胞菌DLL-1作为研究材料,该菌株还显示出对MP的运动能力和趋化反应。首先通过微转座子系统将卡那霉素基因随机插入恶臭假单胞菌DLL-1的染色体中,构建了leuBβ-营养缺陷型突变体A3-27和fliCβ-非运动性突变体a4-8。 。比较了A3-27,a4-8和先前构建的cheAβ-非趋化突变体恶臭假单胞菌DAK对液体培养基和土壤微观世界中MP的生物降解作用。 MP降解的动力学参数在充分混合的液体系统中都相似。然而,在土壤微观世界中,与野生型恶臭假单胞菌DLL-1相比,所有三个突变体的降解率均较低。营养缺陷型突变体A3-27的降解率最低,在5天内只能降解25.7-34.2%MP,非运动型突变体a4-8和非趋化性突变体DAK只能降解53.5-68.1%和64.3-85.7 MP%。本文首次强调了使用非营养缺陷菌来有效去除污染部位的有机磷农药,并指出了选择具有特定运动或趋化亲和力的微生物在优化农药生物修复中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号