首页> 外文期刊>International Journal for Computational Methods in Engineering Science and Mechanics >Algorithms by Design: Part I - On the Hidden Point Collocation Within LMS Methods and Implications for Nonlinear Dynamics Applications
【24h】

Algorithms by Design: Part I - On the Hidden Point Collocation Within LMS Methods and Implications for Nonlinear Dynamics Applications

机译:设计中的算法:第一部分-LMS方法中的隐藏点配置及其对非线性动力学应用的启示

获取原文
获取原文并翻译 | 示例
           

摘要

In computational mechanics to date, even after five decades of research dealing with integration of the linear and nonlinear dynamic equations of motion, there exists for the general cases of algorithm designs still a clear lack of a fundamental understanding regarding evaluation of these equations of motion, and how, why, and what precise time levels the integrations need to take place. This has placed major limitations on commercial code developers, and a lack of confidence in general, thereby restricting the implementation of LMS methods to only a select few that happen to be correct, but without any rigorous proofs or underlying reasons explaining the ramifications. This is extremely critical for the general cases of integration of the equations of motion, in particular for the class of Linear Multi-Step (LMS) that are implicit, involve a single solve, and are second-order accurate in time with unconditional stability (this pertains to linear dynamic situations only), since these serve as the backbone and drivers for most finite element commercial and research software. In this regard, the present Part I of the three-part exposition puts the matter to rest and provides closure, while in Part II (see Ref [1]) and Part III (see Ref [2]) we describe extensions to nonlinear dynamics applications of the basic general framework for the classes of nondissipative and controllable numerical dissipative methods, respectively. Within the confines of these LMS methods, particular attention is paid to designing algorithms that are symplectic-momentum preserving, and with enhancements to include controllable dissipative features and optimal algorithm designs. Simply for illustration of the basic ideas, readily understandable numerical examples are presented that validate the overall concepts and developments.
机译:迄今为止,在计算力学中,即使经过五十年的研究,研究了线性和非线性动态运动方程的集成,对于算法设计的一般情况,仍然仍然缺乏对这些运动方程评估的基本了解,以及如何,为什么以及需要进行什么精确的时间级别集成。这给商业代码开发人员带来了主要限制,并且总体上缺乏信心,从而将LMS方法的实施仅限于恰好是正确的少数选择,而没有任何严格的证据或解释这些后果的根本原因。这对于运动方程式积分的一般情况至关重要,特别是对于隐式,涉及单个求解并且在时间上具有二阶精度且无条件稳定的线性多步(LMS)类而言( (这仅适用于线性动态情况),因为它们是大多数有限元商业和研究软件的基础和驱动程序。在这方面,由三部分组成的本部分的第一部分将问题搁置并提供了解决方案,而在第二部分(参见参考文献[1])和第三部分(参见参考文献[2])中,我们描述了非线性动力学的扩展基本通用框架在非耗散和可控制数值耗散方法类别中的应用。在这些LMS方法的范围内,要特别注意保持辛动量的算法的设计,并进行增强以包括可控的耗散特征和最佳算法设计。仅为了说明基本概念,我们提供了易于理解的数值示例,这些示例验证了总体概念和发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号