首页> 外文期刊>Integrative Biology: quantitative biosciences from nano to macro >Actin cytoskeleton differentially alters the dynamics of lamin A, HP1 alpha and H2B core histone proteins to remodel chromatin condensation state in living cells
【24h】

Actin cytoskeleton differentially alters the dynamics of lamin A, HP1 alpha and H2B core histone proteins to remodel chromatin condensation state in living cells

机译:肌动蛋白的细胞骨架差异性地改变了lamin A,HP1 alpha和H2B核心组蛋白的动力学,从而重塑了活细胞中的染色质凝聚状态

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cells in physical microenvironments regulate their functioning and geometry in response to mechanical stimuli. Recent studies have demonstrated the influence of the integrated actin cytoskeleton on nuclear integrity and chromatin organization. However, the mechanisms underlying the mechanotransduction of their physical coupling to nuclear protein dynamics are not well understood. In this study, we take advantage of micropatterned geometric substrates in NIH3T3 mouse fibroblasts to probe the functional influence of actin organization on nuclear lamina and chromatin assembly. Fluorescence correlation spectroscopy studies demonstrate that stabilization of perinuclear actin strengthens the transient interactions of lamin A with the chromatin. Correspondingly, fluorescence recovery after photobleaching studies reveal enhanced mobility of these nuclear lamina proteins when actin organization is perturbed. Combining these fluorescence dynamics assays, we also demonstrate an actin-driven differential modulation of core histone H2B and heterochromatin HP1 alpha protein dynamics with chromatin. These altered dynamics are reflected structurally by concomitant changes in the architecture of the heterochromatin foci as seen by immunofluorescence assays. Taken together, our study provides a demonstration of the differential mechanical control of perinuclear actin on the dynamics of the nuclear lamina, euchromatin and heterochromatin regimes of the nucleus, and suggests an actin-mediated route to spatially and structurally tune chromatin organization and dynamics.
机译:物理微环境中的细胞响应机械刺激来调节其功能和几何形状。最近的研究表明整合的肌动蛋白细胞骨架对核完整性和染色质组织的影响。但是,尚不十分了解其物理偶联与核蛋白动力学的机械转导的潜在机制。在这项研究中,我们利用NIH3T3小鼠成纤维细胞中微图案化的几何底物来探究肌动蛋白组织对核层和染色质组装的功能影响。荧光相关光谱研究表明,核周肌动蛋白的稳定作用增强了核纤层蛋白A与染色质的瞬时相互作用。相应地,光漂白研究后的荧光恢复表明,当肌动蛋白的组织受到扰动时,这些核纤层蛋白的移动性增强。结合这些荧光动力学分析,我们还证明了肌动蛋白驱动的核心组蛋白H2B和异染色质HP1α蛋白动力学与染色质的差异调节。这些改变的动力学在结构上通过免疫荧光测定法观察到的异染色质病灶结构的伴随变化而在结构上反映出来。综上所述,我们的研究提供了核周肌动蛋白对核层板,常染色质和异染色质体系动力学的不同机械控制的证明,并提出了肌动蛋白介导的途径,可以在空间和结构上调节染色质的组织和动力学。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号