首页> 外文期刊>Inorganic Chemistry Frontiers >Au@ZnO core–shell nanostructures with plasmon-induced visible-light photocatalytic and photoelectrochemical properties
【24h】

Au@ZnO core–shell nanostructures with plasmon-induced visible-light photocatalytic and photoelectrochemical properties

机译:具有等离子体激元诱导的可见光的光催化和光电化学性质的Au @ ZnO核-壳纳米结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Constructing a core–shell nanostructured photocatalyst by integration of plasmonic metal nanocrystals and a semiconductor can offer large active metal/semiconductor interfacial areas and avoid aggregation of the metal nanocrystals. Herein, well-defined Au@ZnO core–shell nanostructures were prepared by coating ZnO on cetyltrimethylammonium bromide (CTAB) stabilized Au nanospheres in aqueous solution. The resultant core–shell nanostructures have Au-nanosphere cores with a diameter of ~55 nm and ZnO shells with a thickness of ~50 nm. After calcination at 350 °C in air, the mesoporous ZnO shell with higher crystallinity and a larger surface area was obtained without any significant change in the morphology or plasmon band of Au@ZnO. The specific surface plasmon resonance of the Au-nanosphere cores endows the Au@ZnO nanostructures with strong visible light absorption around 550 nm. The photocatalytic degradation of an organic pollutant was performed under simulated sunlight and monochromatic LED light with three different wavelengths (365 nm, 520 nm, 660 nm), demonstrating the enhanced photocatalysis of the Au@ZnO nanostructures. Furthermore, the Au@ZnO as a photoelectrode material presents a higher photocurrent density than that of pure ZnO nanoparticles under simulated sunlight. The electrochemical impedance spectra (EIS) Nyquist plots also confirm the higher charge transfer efficiency of the Au@ZnO nanostructures. Such plasmonic metal–semiconductor core–shell nanostructures would provide a desirable platform for studying plasmon-induced/enhanced processes and have great potential in light-harvesting applications.
机译:通过等离激元金属纳米晶体和半导体的集成来构建核-壳纳米结构光催化剂,可以提供较大的活性金属/半导体界面面积,并避免金属纳米晶体的聚集。在这里,通过将ZnO涂覆在十六烷基三甲基溴化铵(CTAB)稳定的水溶液中的Au纳米球上,制备出定义明确的Au @ ZnO核-壳纳米结构。最终的核-壳纳米结构具有直径约55 nm的金纳米球核和厚度约50 nm的ZnO壳。在空气中于350°C煅烧后,获得具有较高结晶度和较大表面积的中孔ZnO壳,而Au @ ZnO的形态或等离激元带没有任何明显变化。金纳米球核的比表面等离子体共振使Au @ ZnO纳米结构在550 nm附近具有很强的可见光吸收。在模拟阳光和具有三种不同波长(365 nm,520 nm,660 nm)的单色LED光下进行了有机污染物的光催化降解,证明了Au @ ZnO纳米结构的增强的光催化作用。此外,在模拟太阳光下,作为光电极材料的Au @ ZnO具有比纯ZnO纳米颗粒更高的光电流密度。电化学阻抗谱(EIS)奈奎斯特图也证实了Au @ ZnO纳米结构的更高电荷转移效率。这样的等离激元金属-半导体核-壳纳米结构将为研究等离激元诱发/增强的过程提供理想的平台,并在光收集应用中具有巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号